Description
给定一个正整数\(n\),输出最小的整数,满足这个整数有n个因子
Input
一行一个整数\(n\)
Output
一行一个整数,代表答案。
Hint
\(1~\leq~n~\leq~1000\)。保证答案不超过\(10^{18}\)
Solution
经典题。
引理:
对于一个唯一分解式形如\(x=p_1^{c_1}p_2^{c_2}p_3^{c^3}\cdots p_k^{c_k}\)的数字\(x\),则其因数个数为\(\prod(c_i+1)\)。
证明:
考虑乘法原理,第\(i\)项的指数有\(0~\sim~c_i\)共\(c_i+1\)种方式,根据唯一分解定理的逆定理,每一项指数不同所得到的数是不同的。于是根据乘法原理,其因数个数为\(\prod(c_i+1)\)。
证毕。
定理:
考虑一个因数个数为\(n\)的最小整数\(x\),则它的唯一分解式\(x=p_1^{c_1}p_2^{c_2}p_3^{c^3}\cdots p_k^{c_k}\)中,不妨设\(p_1~<~p_2~<~p_3~<~\cdots~<~p_k\),则一定满足:\(p_1=2\),且\(\forall ~i~>~1\),\(p_i\)是大于\(p_{i-1}\)的第一个质数,同时\(\forall~i~\in~[1,k)\),\(c_i~\leq~c_{i+1}\)。
证明:
1、若\(p\)在质数表上不是连续的,不妨设\(p_i~<~q~<p_{i+1}\),则将\(p_{i+1}\)替换为\(q\),\(x\)会变小,因为\(c_{i+1}\)不变,根据引理,因数个数不变。于是替换为\(q\)答案更优,这与\(x\)是最小的有\(n\)个因子的数矛盾。
2、若\(c_i\)不是单调不升,不妨设\(c_i~<~c_{i+1}\),则将两指数交换,\(x\)会变小。同上可证因数个数不变。于是交换后答案更优,这与\(x\)是最小的有\(n\)个因子的数矛盾。
证毕。
于是发现答案的唯一分界式,\(2\)一定会出现且指数最大。考虑\(2^{64}\)已经大于\(10^{18}\),所以指数最多为\(64\)。又发现前15个质数连乘的答案已经大于\(10^{18}\),所以质数最多是15个。于是爆搜一下,分别进行一下可行性剪枝和最优性剪枝,即可通过本题。
Code
#include<cstdio>
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
}
namespace IO {
char buf[120];
}
template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
}
template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;}
template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
}
const int prime[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
int n;
ll ans=1000000000000000001;
void dfs(ll,int,int,int);
int main() {
qr(n);
dfs(1ll,0,64,1);
qw(ans,'\n',true);
return 0;
}
void dfs(ll now,int cur,int p,int cnt) {
if(cnt > n) return;
if(now <= 0ll) return;
if(now > ans) return;
if(cur > 15) return;
if(cnt == n) {ans=now;return;}
for(int i=1;i<=p;++i) {
dfs(now*=prime[cur],cur+1,i,cnt*(i+1));
}
}
Summary
对于一个唯一分解式形如\(x=p_1^{c_1}p_2^{c_2}p_3^{c^3}\cdots p_k^{c_k}\)的数字\(x\),则其因数个数为\(\prod(c_i+1)\)。
原文地址:https://www.cnblogs.com/yifusuyi/p/9901071.html