Spark常用的transformation算子

1.map 和 mapPartitions

map的输入变换函数应用于RDD中所有元素,而mapPartitions应用于所有分区。区别于mapPartitions主要在于调用粒度不同。
mapPartition可以倒过来理解,先partition,再把每个partition进行map函数,
适用场景:
如果在映射的过程中需要频繁创建额外的对象,使用mapPartitions要比map高效的多。

 val numbers: RDD[Int] = sc.parallelize(seqs,3)

    //map
    numbers.map(x => {
      println("AAA")//打印6次
      x * 3
    }).collect().foreach(println(_))

    /**
      * 遍历分区(3个)
      */
    numbers.mapPartitions(par => {
      println("aaa")//打印3次
      par.map(p => p * 3)
    }).collect().foreach(println(_))

2.filter

过滤操作,满足filter内function函数为true的RDD内所有元素组成一个新的数据集

val seqs = Seq(1,2,3,4,5,6)
//4,5,6
seqs.filter(x=> x > 3).foreach(println(_))

3.flatMap

map是对RDD元素逐一进行函数操作映射为另外一个RDD,
而flatMap操作是将函数应用于RDD之中的每一个元素,将
返回迭代器的所有内容构成的新的RDD。
flatMap和Map区别在于map为“映射”,而flatMap则是“先映射,后扁平化”。

val seqs = Array("aaa AAA","bbb BBB","ccc CCC","ddd DDD")

val numbers = sc.parallelize(seqs)

scala> numbers.map(x => x.split(" ")).collect()
res1: Array[Array[String]] = Array(Array(aaa, AAA), Array(bbb, BBB), Array(ccc, CCC), Array(ddd, DDD))

scala> numbers.flatMap(x=>x.split(" ")).collect()
res2: Array[String] = Array(aaa, AAA, bbb, BBB, ccc, CCC, ddd, DDD)

4.mapPartitionsWithIndex

与mapPartitions类似,但需要提供一个表示分区索引值的整型值作为参数,因此function必须是(int, Iterator\<T\>)=>Iterator\<U\>类型的。

//统计键值对中的各个分区的元素
    val rdd = sc.parallelize(List((1,1), (1,2), (2,3), (2,4), (3,5), (3,6),(4,7), (4,8),(5,9), (5,10)),3)

    def mapPartIndexFunc(i1:Int,iter: Iterator[(Int,Int)]):Iterator[(Int,(Int,Int))]={
      var res = List[(Int,(Int,Int))]()
      while(iter.hasNext){
        var next = iter.next()
        res=res.::(i1,next)
      }
      res.iterator
    }
    val mapPartIndexRDD = rdd.mapPartitionsWithIndex(mapPartIndexFunc)

    mapPartIndexRDD.foreach(println(_))

//计算结果
(0,(1,1))
(0,(1,2))
(0,(2,3))
(1,(2,4))
(1,(3,5))
(1,(3,6))
(2,(4,7))
(2,(4,8))
(2,(5,9))
(2,(5,10))

5.sample(withReplacement,fraction,seed)

以指定的随机种子随机抽样出数量为fraction的数据,withReplacement表示是抽出的数据是否放回,true为有放回的抽样,false为无放回的抽样

scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[9] at parallelize at <console>:24

scala> rdd.sample(true,0.57,5).collect
res10: Array[Int] = Array(8, 8, 8, 9)

6.union(并集)

合并,它只是将rdd1和rdd2在逻辑上合并,并不会进行数据的合并以传输,不去重

scala>var rdd1 = sc.parallelize(List("aa","aa","bb","cc","dd"));
rdd1: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[4] at parallelize at <console>:24

scala>var rdd2 = sc.parallelize(List("aa","dd","ff"));
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at parallelize at <console>:24

scala>rdd1.union(rdd2).collect();
res3: Array[String] = Array(aa, aa, bb, cc, dd, aa, dd, ff)

7.intersection

RDD1.intersection(RDD2),返回两个RDD的交集,并且去重
intersection需要混洗数据,比较浪费性能

scala> var RDD1 = sc.parallelize(List("aa","aa","bb","cc","dd"))
RDD1: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[11] at parallelize at <console>:24

scala> var RDD2 = sc.parallelize(List("aa","dd","ff"))
RDD2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[12] at parallelize at <console>:24

scala> RDD1.intersection(RDD2).collect
res5: Array[String] = Array(aa, dd)

8.distinct

distinct用于去重, 我们生成的RDD可能有重复的元素,使用distinct方法可以去掉重复的元素, 不过此方法涉及到混洗,操作开销很大

scala> var RDD1 = sc.parallelize(List("aa","aa","bb","cc","dd"))
RDD1: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[7] at parallelize at <console>:24

scala> RDD1.collect
res4: Array[String] = Array(aa, aa, bb, cc, dd)

scala> val distinctRDD = RDD1.distinct.collect
distinctRDD: Array[String] = Array(aa, dd, bb, cc)

9.groupByKey

groupByKey会将RDD[key,value] 按照相同的key进行分组,形成RDD[key,Iterable[value]]的形式, 有点类似于sql中的groupby,例如类似于mysql中的group_concat

//按照学生姓名对学生成绩进行分组
scala>     val scoreDetail = sc.parallelize(List(("xiaoming",75),("xiaoming",90),("lihua",95),("lihua",100),("xiaofeng",85)))
scoreDetail: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[3] at parallelize at <console>:24

scala> scoreDetail.groupByKey().collect().foreach(println(_))
(lihua,CompactBuffer(95, 100))
(xiaoming,CompactBuffer(75, 90))
(xiaofeng,CompactBuffer(85))

10.reduceByKey

接收一个函数,按照相同的key进行reduce操作,类似于scala的reduce的操作
例如RDD {(1, 2), (3, 4), (3, 6)}进行reduce ,key不变,value相加

scala> var mapRDD = sc.parallelize(List((1,2),(3,4),(3,6)))
mapRDD: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[6] at parallelize at <console>:24

scala> var reduceRDD = mapRDD.reduceByKey(_+_)
reduceRDD: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[7] at reduceByKey at <console>:26

scala> reduceRDD.foreach(x=>println(x))
(1,2)
(3,10)

11.aggregateByKey

对PairRDD中相同Key的值进行聚合操作,在聚合过程中同样使用了一个中立的初始值,因为aggregateByKey是对相同Key中的值进行聚合操作,所以aggregateByKey函数最终返回的类型还是Pair RDD,对应的结果是Key和聚合好的值

val data = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,7),(3,8)),1)

    //println(data.partitions.size)

    /**
      * 比较相同key得两个value中的最大值,第一次为max(1,3),1为初始值,得:3,第二次为max(3,2),得3,
      * 第三次为max(3,4),得:4,所以key为1的结果为:(1,4)
      */
    def seq(a:Int, b:Int) : Int ={
       math.max(a,b)
       }

    /**
      * 不同分区中相同key的value相加,如果只有一个分区,此方法不起效果
      */
    def comb(a:Int, b:Int) : Int ={
       a + b
       }

    //聚合打印结果
    data.aggregateByKey(1)(seq, comb).collect.foreach(println(_))

    //查看各个分区数据
    data.mapPartitionsWithIndex {
      (partid, iter) => {
        var part_map = scala.collection.mutable.Map[String, List[(Int,Int)]]()
        var part_name = "part_" + partid
        part_map(part_name) = List[(Int,Int)]()
        while (iter.hasNext) {
          part_map(part_name) :+= iter.next() //:+= 列表尾部追加元素
        }
        part_map.iterator
      }
    }.collect().foreach(println(_))

12.sortByKey

用于对pairRDD按照key进行排序,第一个参数可以设置true或者false,默认是true

scala> val rdd = sc.parallelize(Array((3, 4),(1, 2),(4,4),(2,5), (6,5), (5, 6)))
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[10] at parallelize at <console>:24

scala> rdd.sortByKey().collect
res4: Array[(Int, Int)] = Array((1,2), (2,5), (3,4), (4,4), (5,6), (6,5))

scala> rdd.sortByKey(true).collect
res5: Array[(Int, Int)] = Array((1,2), (2,5), (3,4), (4,4), (5,6), (6,5))

scala> rdd.sortByKey(false).collect
res6: Array[(Int, Int)] = Array((6,5), (5,6), (4,4), (3,4), (2,5), (1,2))

13.join

RDD1.join(RDD2) ,可以把RDD1,RDD2中的相同的key给连接起来,类似于sql中的inner join操作,返回两边都匹配的数据

scala> val RDD1 = sc.parallelize(Array(("A","a1"),("B","b1"),("C","c1"),("D","d1"),("E","e1"),("F","f1")))
RDD1: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[19] at parallelize at <console>:24

scala> val RDD2 = sc.parallelize(Array(("A","a2"),("B","b2"),("C","c1"),("C","c2"),("C","c3"),("E","e2")))
RDD2: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[20] at parallelize at <console>:24

scala> RDD1.join(RDD2).collect
res8: Array[(String, (String, String))] = Array((B,(b1,b2)), (A,(a1,a2)), (C,(c1,c1)), (C,(c1,c2)), (C,(c1,c3)), (E,(e1,e2)))

scala> RDD2.join(RDD1).collect
res9: Array[(String, (String, String))] = Array((B,(b2,b1)), (A,(a2,a1)), (C,(c1,c1)), (C,(c2,c1)), (C,(c3,c1)), (E,(e2,e1)))

其他操作:
left outer join:是以左边为基准,向左靠(左边(a)的记录一定会存在,右边(b)的记录有的返回Some(x),没有的补None。)

scala> RDD1.leftOuterJoin(RDD2).collect
res11: Array[(String, (String, Option[String]))] = Array((B,(b1,Some(b2))), (A,(a1,Some(a2))), (C,(c1,Some(c1))), (C,(c1,Some(c2))), (C,(c1,Some(c3))), (E,(e1,Some(e2))), (F,(f1,None)), (D,(d1,None)))

scala> RDD2.leftOuterJoin(RDD1).collect
res12: Array[(String, (String, Option[String]))] = Array((B,(b2,Some(b1))), (A,(a2,Some(a1))), (C,(c1,Some(c1))), (C,(c2,Some(c1))), (C,(c3,Some(c1))), (E,(e2,Some(e1))))

right outer join:是以右边为基准,向右靠(右边(b)的记录一定会存在,左边(a)的记录有的返回Some(x),没有的补None。)

scala> RDD1.rightOuterJoin(RDD2).collect
res13: Array[(String, (Option[String], String))] = Array((B,(Some(b1),b2)), (A,(Some(a1),a2)), (C,(Some(c1),c1)), (C,(Some(c1),c2)), (C,(Some(c1),c3)), (E,(Some(e1),e2)))

scala> RDD2.rightOuterJoin(RDD1).collect
res14: Array[(String, (Option[String], String))] = Array((B,(Some(b2),b1)), (A,(Some(a2),a1)), (C,(Some(c1),c1)), (C,(Some(c2),c1)), (C,(Some(c3),c1)), (E,(Some(e2),e1)), (F,(None,f1)), (D,(None,d1)))

full outer join:左边和右边的都一定存在

scala> RDD1.fullOuterJoin(RDD2).collect
res16: Array[(String, (Option[String], Option[String]))] = Array((B,(Some(b1),Some(b2))), (A,(Some(a1),Some(a2))), (C,(Some(c1),Some(c1))), (C,(Some(c1),Some(c2))), (C,(Some(c1),Some(c3))), (E,(Some(e1),Some(e2))), (F,(Some(f1),None)), (D,(Some(d1),None)))

scala> RDD2.fullOuterJoin(RDD1).collect
res17: Array[(String, (Option[String], Option[String]))] = Array((B,(Some(b2),Some(b1))), (A,(Some(a2),Some(a1))), (C,(Some(c1),Some(c1))), (C,(Some(c2),Some(c1))), (C,(Some(c3),Some(c1))), (E,(Some(e2),Some(e1))), (F,(None,Some(f1))), (D,(None,Some(d1))))

14.cogroup

对两个RDD中的KV元素,每个RDD中相同key中的元素分别聚合成一个集合。
与reduceByKey不同的是针对两个RDD中相同的key的元素进行合并。
例子中将多个RDD中同一个Key对应的Value组合到一起。rdd1中不存在Key为dd的元素(自然就不存在Value了),在组合的过程中将rdd1对应的位置
设置为CompactBuffer()了,而不是去掉了。

scala> val rdd1 = sc.parallelize(Array(("aa",1),("bb",2),("cc",6)))
rdd1: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[6] at parallelize at <console>:24

scala> val rdd2 = sc.parallelize(Array(("aa",3),("bb",4),("cc",5),("dd",6),("aa",8)))
rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[7] at parallelize at <console>:24

scala> val rdd3 = rdd1.cogroup(rdd2).collect
rdd3: Array[(String, (Iterable[Int], Iterable[Int]))] = Array((aa,(CompactBuffer(1),CompactBuffer(3, 8))), (dd,(CompactBuffer(),CompactBuffer(6))), (bb,(CompactBuffer(2),CompactBuffer(4))), (cc,(CompactBuffer(6),CompactBuffer(5))))

15.cartesian(笛卡尔积)

RDD1.cartesian(RDD2) 返回RDD1和RDD2的笛卡儿积,这个开销非常大

scala> var RDD1 = sc.parallelize(List("1","2","3"))
RDD1: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at parallelize at <console>:24

scala> var RDD2 = sc.parallelize(List("a","b","c"))
RDD2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[1] at parallelize at <console>:24

scala> RDD1.cartesian(RDD2).collect
res0: Array[(String, String)] = Array((1,a), (1,b), (1,c), (2,a), (2,b), (2,c), (3,a), (3,b), (3,c))

16.pipe

有种特殊的Rdd,即pipedRdd,提供了调用外部程序如基于CUDA的C++程序,使其能够更快的进行计算。caffe on spark 和tensorflow on spark 也是基于此机制

#准备脚本
#!/bin/sh
echo "Running shell script"
while read LINE; do
   echo ${LINE}!
done

# Spark RDD调用
scala> val data = sc.parallelize(List("hi","hello","how","are","you"))
data: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[52] at parallelize at <console>:24

scala> val scriptPath = "/home/hadoop/echo.sh"
scriptPath: String = /home/hadoop/echo.sh

scala> val pipeRDD = data.pipe(scriptPath)
pipeRDD: org.apache.spark.rdd.RDD[String] = PipedRDD[53] at pipe at <console>:28

scala> pipeRDD.collect()
res21: Array[String] = Array(Running shell script, hi!, hello!, how!, are!, you!)

17.coalesce 和 repartition

他们两个都是RDD的分区进行重新划分,repartition只是coalesce接口中shuffle为true的简易实现。
repartition一定会发生shuffle过程
coalesce则不一定

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    coalesce(numPartitions, shuffle = true)
  }

假设RDD有N个分区,需要重新划分成M个分区

1)N<M。一般情况下N个分区有数据分布不均匀的状况,利用HashPartitioner函数将数据重新分区为M个,这时需要将shuffle设置为true。

2)如果N>M并且N和M相差不多,(假如N是1000,M是100)那么就可以将N个分区中的若干个分区合并成一个新的分区,最终合并为M个分区,这时可以将shuff设置为false,在shuffl为false的情况下,如果M>N时,coalesce为无效的,不进行shuffle过程,父RDD和子RDD之间是窄依赖关系。

3)如果N>M并且两者相差悬殊,这时如果将shuffle设置为false,父子RDD是窄依赖关系,他们同处在一个Stage中,就可能造成spark程序的并行度不够,从而影响性能,如果在M为1的时候,为了使coalesce之前的操作有更好的并行度,可以讲shuffle设置为true。

总之:如果shuff为false时,如果传入的参数大于现有的分区数目,RDD的分区数不变,也就是说不经过shuffle,是无法将RDDde分区数变多的。

18.repartitionAndSortWithinPartitions

根据给定的分区程序对RDD进行重新分区,并在每个生成的分区内按键对记录进行排序。 这比调用重新分区,然后在每个分区内进行排序更有效率,因为它可以将排序压入洗牌机器。
repartitionAndSortWithinPartitions算是一个高效的算子,是因为它要比使用repartition And sortByKey 效率高,这是由于它的排序是在shuffle过程中进行,一边shuffle,一边排序;

package core

import org.apache.spark.rdd.RDD
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}

object TransformationDemo {

  def main(args: Array[String]): Unit = {
    val sparkConf: SparkConf = new SparkConf().setMaster("local").setAppName("test")
    val sc = new SparkContext(sparkConf)

    val rdd1: RDD[(Int, Int)] = sc.parallelize(List((1,2),(2,3),(3,7),(4,8),(5,2),(6,5),(7,7)))

    //1
    println(rdd1.partitions.size)

    /**
      * (0,(7,7))
      * (0,(6,5))
      * (0,(5,2))
      * (0,(4,8))
      * (0,(3,7))
      * (0,(2,3))
      * (0,(1,2))
      */
    rdd1.mapPartitionsWithIndex(mapPartIndexFunc).foreach(println)

    //重新分区并排序(默认根据key升序排序)
    val rdd2: RDD[(Int, Int)] = rdd1.repartitionAndSortWithinPartitions(new HashPartitioner(3))

    //3
    println(rdd2.partitions.size)

    /**
      * (0,(6,5))
      * (0,(3,7))
      * (1,(7,7))
      * (1,(4,8))
      * (1,(1,2))
      * (2,(5,2))
      * (2,(2,3))
      */
    rdd2.mapPartitionsWithIndex(mapPartIndexFunc).foreach(println)

    /**
      * (3,7)
      * (6,5)
      * (1,2)
      * (4,8)
      * (7,7)
      * (2,3)
      * (5,2)
      */
    rdd2.collect().foreach(println)

    sc.stop()

  }

  /**
    * 遍历获取每个分区中的数据
    * @param i1
    * @param iter
    * @return
    */
  def mapPartIndexFunc(i1:Int,iter: Iterator[(Int,Int)]):Iterator[(Int,(Int,Int))]={
    var res = List[(Int,(Int,Int))]()
    while(iter.hasNext){
      var next = iter.next()
      res=res.::(i1,next)
    }
    res.iterator
  }
}

原文地址:http://blog.51cto.com/simplelife/2333943

时间: 2024-10-27 07:28:10

Spark常用的transformation算子的相关文章

【Spark】RDD操作详解2——值型Transformation算子

处理数据类型为Value型的Transformation算子可以根据RDD变换算子的输入分区与输出分区关系分为以下几种类型: 1)输入分区与输出分区一对一型 2)输入分区与输出分区多对一型 3)输入分区与输出分区多对多型 4)输出分区为输入分区子集型 5)还有一种特殊的输入与输出分区一对一的算子类型:Cache型. Cache算子对RDD分区进行缓存 输入分区与输出分区一对一型 (1)map 将原来RDD的每个数据项通过map中的用户自定义函数f映射转变为一个新的元素.源码中的map算子相当于初

【Spark】RDD操作具体解释2——值型Transformation算子

处理数据类型为Value型的Transformation算子能够依据RDD变换算子的输入分区与输出分区关系分为下面几种类型: 1)输入分区与输出分区一对一型 2)输入分区与输出分区多对一型 3)输入分区与输出分区多对多型 4)输出分区为输入分区子集型 5)另一种特殊的输入与输出分区一对一的算子类型:Cache型. Cache算子对RDD分区进行缓存 输入分区与输出分区一对一型 (1)map 将原来RDD的每一个数据项通过map中的用户自己定义函数f映射转变为一个新的元素. 源代码中的map算子相

08、Spark常用RDD变换

08.Spark常用RDD变换 8.1 概述 Spark RDD内部提供了很多变换操作,可以使用对数据的各种处理.同时,针对KV类型的操作,对应的方法封装在PairRDDFunctions trait中,KV类的RDD可以被隐式转换成PairRDDFunctions类型.其中很多的操作,和传统的SQL语句中的操作是对应的,只是底层换成Spark的MR计算. 8.2 常用变换 操作 解释 map 变换,将输入的每个元素进行响应操作,生成新的元素 flatMap 压扁,取出具有可迭代性质的组件中每个

Spark(二)算子详解

目录 Spark(二)算子讲解 一.wordcountcount 二.编程模型 三.RDD数据集和算子的使用 Spark(二)算子讲解 @ 一.wordcountcount 基于上次的wordcount,我们来写一个wordcountcount,来对wc程序进行第二次计数,我们来分析一下性能. package com.littlepage.wc import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkCon

【Spark】RDD操作详解3——键值型Transformation算子

Transformation处理的数据为Key-Value形式的算子大致可以分为:输入分区与输出分区一对一.聚集.连接操作. 输入分区与输出分区一对一 mapValues mapValues:针对(Key,Value)型数据中的Value进行Map操作,而不对Key进行处理. 方框代表RDD分区.a=>a+2代表只对( V1, 1)数据中的1进行加2操作,返回结果为3. 源码: /** * Pass each value in the key-value pair RDD through a m

Spark Transformation 算子

Java版 package com.huanfion.Spark; import com.sun.tools.internal.ws.processor.model.java.JavaParameter; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.

Spark transformation算子之coalesce&amp;&amp;repartition

coalesce def coalesce(numPartitions: Int, shuffle: Boolean = false,partitionCoalescer:Option[PartitionCoalescer] = Option.empty)(implicit ord: Ordering[T] = null): RDD[T] 一.功能介绍 coalesce算子最基本的功能就是返回一个numPartitions个partition的RDD. 二.使用及注意事项 这个算子的结果默认是窄

Spark常用的算子总结——Map

从一个list变成 key value val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", " eagle"), 2) val b = a.map(x => (x, 1)) b.collect.foreach(println(_)) # /* # (dog,1) # (tiger,1) # (l

Spark常用的算子总结(3)—— flatMapValues

flatmapValues就是和flatmap差不多,但是人家本身就是个key value了,所以一个pair怎么变成多个pair呢,就是根据关于values的函数 val a = sc.parallelize(List((1,2),(3,4),(5,6))) val b = a.flatMapValues(x=>1 to x) b.collect.foreach(println(_)) /*结果 (1,1) (1,2) (3,1) (3,2) (3,3) (3,4) (5,1) (5,2) (