大致题意: 你有两种捕捉球(分别为\(A\)个和\(B\)个),要捕捉\(n\)个神奇宝贝,第\(i\)个神奇宝贝被第一种球捕捉的概率是\(s1_i\),被第二种球捕捉的概率是\(s2_i\),问在最优策略下期望捕捉到的神奇宝贝数量。
\(WQS\)二分
这应该是一道比较经典的\(WQS\)二分题(毕竟是 \(WQS\)二分套\(WQS\)二分)。
\(WQS\)二分套\(WQS\)二分
如果你知道\(WQS\)二分,应该就不难想到\(WQS\)二分一个代价\(C1\),表示每使用一个第一种球所需要的代价,然后再\(WQS\)二分一个代价\(C2\),表示每使用一个第二种球所需要的代价。于是就成了\(WQS\)二分套\(WQS\)二分。
\(DP\)转移
在\(WQS\)二分后,就是\(DP\)了。
我们可以用\(f_i\)表示到第\(i\)个神奇宝贝为止捕捉到的神奇宝贝总数的最大期望值,并用\(g1_i\)表示此时使用的第一种捕捉球个数,用\(g2_i\)表示此时使用的第二种捕捉球个数。
其实\(DP\)也是挺简单的,共有\(4\)种情况:
- 不使用捕捉球。\(f_i=f_{i-1},g1_i=g1_{i-1},g2_i=g2_{i-1}\)。
- 使用第一种捕捉球。\(f_i=f_{i-1}+s1_i-C1,g1_i=g1_{i-1}+1,g2_i=g2_{i-1}\)
- 使用第二种捕捉球。\(f_i=f_{i-1}+s2_i-C2,g1_i=g1_{i-1},g2_i=g2_{i-1}+1\)
- 同时使用两种捕捉球。\(f_i=f_{i-1}+s1_i+s2_i-C1-C2-s1_i*s2_i,g1_i=g1_{i-1}+1,g2_i=g2_{i-1}+1\)
这样就可以了。
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define uint unsigned int
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define abs(x) ((x)<0?-(x):(x))
#define INF 1e9
#define Inc(x,y) ((x+=(y))>=MOD&&(x-=MOD))
#define ten(x) (((x)<<3)+((x)<<1))
#define N 100000
#define eps 1e-12
using namespace std;
int n,A,B;double s1[N+5],s2[N+5];
class Class_WQS//WQS二分套WQS二分
{
private:
double C1,C2,f[N+5];int g1[N+5],g2[N+5];//用f[i]表示到第i个神奇宝贝为止捕捉到的神奇宝贝总数的最大期望值,并用g1[i]表示此时使用的第一种捕捉球个数,用g2[i]表示此时使用的第二种捕捉球个数
inline void check()//DP转移
{
for(register int i=1;i<=n;++i)
{
f[i]=f[i-1],g1[i]=g1[i-1],g2[i]=g2[i-1];//不使用捕捉球
if(f[i-1]+(s1[i]-C1)-f[i]>eps) f[i]=f[i-1]+(s1[i]-C1),g1[i]=g1[i-1]+1,g2[i]=g2[i-1];//使用第一种捕捉球
if(f[i-1]+(s2[i]-C2)-f[i]>eps) f[i]=f[i-1]+(s2[i]-C2),g1[i]=g1[i-1],g2[i]=g2[i-1]+1;//使用第二种捕捉球
if(f[i-1]+(s1[i]+s2[i]-C1-C2-s1[i]*s2[i])-f[i]>eps) f[i]=f[i-1]+(s1[i]+s2[i]-C1-C2-s1[i]*s2[i]),g1[i]=g1[i-1]+1,g2[i]=g2[i-1]+1;//同时使用两种捕捉球
}
}
inline void GetRes()//第二层二分,二分C2
{
register double l=0.0,r=1.0;
for(C2=(l+r)/2;r-l>eps;C2=(l+r)/2)
{
if(check(),!(g2[n]^B)) return;//找到符合条件的C2,就可以return了
g2[n]>B?l=C2:r=C2;//如果选得物品数量偏多,将l更新为C2,否则将r更新为C2
}
}
public:
inline double GetAns()//第一层二分,二分C1
{
register double l=0.0,r=1.0;
for(C1=(l+r)/2;r-l>eps;C1=(l+r)/2)
{
if(GetRes(),!(g1[n]^A)) break;//找到符合条件的C1,就可以break了
g1[n]>A?l=C1:r=C1;//如果选得物品数量偏多,将l更新为C1,否则将r更新为C1
}
return f[n]+A*C1+B*C2;//返回答案
}
}WQS;
int main()
{
register int i;
scanf("%d%d%d",&n,&A,&B);
for(i=1;i<=n;++i) scanf("%lf",&s1[i]);
for(i=1;i<=n;++i) scanf("%lf",&s2[i]);
return printf("%.10lf\n",WQS.GetAns()),0;
}
原文地址:https://www.cnblogs.com/chenxiaoran666/p/CF739E.html
时间: 2024-12-09 22:02:40