Spark开发的完整基础_欢乐的马小纪

map是对每个元素操作, mapPartitions是对其中的每个partition操作

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

mapPartitionsWithIndex : 把每个partition中的分区号和对应的值拿出来, 看源码

val func = (index: Int, iter: Iterator[(Int)]) => {

iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator

}

val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)

rdd1.mapPartitionsWithIndex(func).collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

aggregate

def func1(index: Int, iter: Iterator[(Int)]) : Iterator[String] = {

iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator

}

val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)

rdd1.mapPartitionsWithIndex(func1).collect

###是action操作,柯理化 第一个参数是初始值, 二:是2个函数[每个函数都是2个参数(第一个参数:先对个个分区进行合并, 第二个:对个个分区合并后的结果再进行合并), 输出一个参数]

###0 + (0+1+2+3+4   +   0+5+6+7+8+9)

rdd1.aggregate(0)(_+_, _+_)

rdd1.aggregate(0)(math.max(_, _), _ + _)

###5和1比, 得5再和234比得5 --> 5和6789比,得9 --> 5 + (5+9)

rdd1.aggregate(5)(math.max(_, _), _ + _)

val rdd2 = sc.parallelize(List("a","b","c","d","e","f"),2)

def func2(index: Int, iter: Iterator[(String)]) : Iterator[String] = {

iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator

}

rdd2.aggregate("")(_ + _, _ + _)

rdd2.aggregate("=")(_ + _, _ + _)

val rdd3 = sc.parallelize(List("12","23","345","4567"),2)

rdd3.aggregate("")((x,y) => math.max(x.length, y.length).toString, (x,y) => x + y)

val rdd4 = sc.parallelize(List("12","23","345",""),2)

rdd4.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)

两个分区

1.("","12","23")->("0","23")->("1")

2. ("","345","")  ->("0","")  ->("0")

val rdd5 = sc.parallelize(List("12","23","","345"),2)

rdd5.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)

两个分区

1.("","12","23")->("0","23")->("1")

2. ("","","345")  ->("1","")  ->("1")

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

aggregateByKey  和 reduceByKey基本一样,区别是它同于combiner

val pairRDD = sc.parallelize(List( ("cat",2), ("cat", 5), ("mouse", 4),("cat", 12), ("dog", 12), ("mouse", 2)), 2)

def func2(index: Int, iter: Iterator[(String, Int)]) : Iterator[String] = {

iter.toList.map(x => "[partID:" +  index + ", val: " + x + "]").iterator

}

pairRDD.mapPartitionsWithIndex(func2).collect

pairRDD.aggregateByKey(0)(math.max(_, _), _ + _).collect

pairRDD.aggregateByKey(100)(math.max(_, _), _ + _).collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

checkpoint

sc.setCheckpointDir("hdfs://node-1.itcast.cn:9000/ck")

val rdd = sc.textFile("hdfs://node-1.itcast.cn:9000/wc").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)

rdd.checkpoint

rdd.isCheckpointed

rdd.count

rdd.isCheckpointed

rdd.getCheckpointFile

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

coalesce, repartition

val rdd1 = sc.parallelize(1 to 10, 10)

val rdd2 = rdd1.coalesce(2, false)

rdd2.partitions.length

coalesce等同于repartition,第二个参数指的是否进行shuffle,

repartition方法就是调用coalesce方法,-----repartition(a)等同于coalesce(a,true)

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

collectAsMap : Map(b -> 2, a -> 1)

val rdd = sc.parallelize(List(("a", 1), ("b", 2)))

rdd.collectAsMap

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

combineByKey : 和reduceByKey是相同的效果

###第一个参数x:原封不动取出来, 第二个参数:是函数, 局部运算, 第三个:是函数, 对局部运算后的结果再做运算

###每个分区中每个key中value中的第一个值, (hello,1)(hello,1)(good,1)-->(hello(1,1),good(1))-->x就相当于hello的第一个1, good中的1

val rdd1 = sc.textFile("hdfs://master:9000/wordcount/input/").flatMap(_.split(" ")).map((_, 1))

val rdd2 = rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)

rdd1.collect

rdd2.collect

###当input下有3个文件时(有3个block块, 不是有3个文件就有3个block, ), 每个会多加3个10

val rdd3 = rdd1.combineByKey(x => x + 10, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)

rdd3.collect

val rdd4 = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)

val rdd5 = sc.parallelize(List(1,1,2,2,2,1,2,2,2), 3)

val rdd6 = rdd5.zip(rdd4)

val rdd7 = rdd6.combineByKey(List(_), (x: List[String], y: String) => x :+ y, (m: List[String], n: List[String]) => m ++ n)

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

countByKey

val rdd1 = sc.parallelize(List(("a", 1), ("b", 2), ("b", 2), ("c", 2), ("c", 1)))

rdd1.countByKey--------------Map(a->1,b->2,c->2)

rdd1.countByValue------------Map(("a", 1)->1,("b", 2)->2,("c", 2)->1,("c", 1)->1)

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

filterByRange

val rdd1 = sc.parallelize(List(("e", 5), ("c", 3), ("d", 4), ("c", 2), ("a", 1)))

val rdd2 = rdd1.filterByRange("b", "d")

rdd2.collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

flatMapValues  :  Array((a,1), (a,2), (b,3), (b,4))

val rdd3 = sc.parallelize(List(("a", "1 2"), ("b", "3 4")))

val rdd4 = rdd3.flatMapValues(_.split(" "))--------------------------Array((a,1), (a,2), (b,3), (b,4))

rdd4.collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

foldByKey

val rdd1 = sc.parallelize(List("dog", "wolf", "cat", "bear"), 2)

val rdd2 = rdd1.map(x => (x.length, x))

val rdd3 = rdd2.foldByKey("")(_+_)---------------((3,dogcat),(4,wolf,bear))

val rdd = sc.textFile("hdfs://node-1.itcast.cn:9000/wc").flatMap(_.split(" ")).map((_, 1))

rdd.foldByKey(0)(_+_)

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

foreachPartition  action操作,虽然不能返回RDD,但是可以在里面对分区进行操作

val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3)

rdd1.foreachPartition(x => println(x.reduce(_ + _)))

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

keyBy : 以传入的参数做key

val rdd1 = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)

val rdd2 = rdd1.keyBy(_.length)

val rdd2 = rdd1.keyBy(_(0))

rdd2.collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

keys values

val rdd1 = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)

val rdd2 = rdd1.map(x => (x.length, x))

rdd2.keys.collect

rdd2.values.collect

-------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------

原文地址:https://www.cnblogs.com/makailong/p/9934228.html

时间: 2024-08-01 16:44:52

Spark开发的完整基础_欢乐的马小纪的相关文章

MongoDB实战开发 【零基础学习,附完整Asp.net示例】

MongoDB实战开发 [零基础学习,附完整Asp.net示例] 阅读目录 开始 下载MongoDB,并启动它 在C#使用MongoDB 重构(简化)代码 使用MongoDB的客户端查看数据 使用MongoDB的客户端维护数据 MongoDB提供的C#驱动 MongoDB不支持在查询数据库时使用Join操作 获取MongoDB服务端状态 [目标]:本文将以实战的形式,向您展示如何用C#访问MongoDB,完成常见的数据库操作任务, 同时,也将介绍MongoDB的客户端(命令行工作模式)以及一些基

【Spark机器学习速成宝典】基础篇01Windows下spark开发环境搭建+sbt+idea(Scala版)

注意: spark用2.1.1 scala用2.11.11 材料准备 spark安装包 JDK 8 IDEA开发工具 scala 2.11.8 (注:spark2.1.0环境于scala2.11环境开发,所以必须版本对应 scala不是必须安装的,如果你是打算使用scala进行spark开发,则需要安装 环境搭建步骤 将spark-2.1.1-bin-hadoop2.x版本至c盘下即可 将spark中的jar包全部提取出来另外放到一地方用于进行开发 新建IDEA项目,将所有jar包导入到IDEA

Spark性能优化指南——基础篇

前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar

【spark系列3】spark开发简单指南

分布式数据集创建之textFile 文本文件的RDDs能够通过SparkContext的textFile方法创建,该方法接受文件的URI地址(或者机器上的文件本地路径,或者一个hdfs://, sdn://,kfs://,其他URI).这里是一个调用样例:scala> val distFile = sc.textFile("data.txt")distFile: spark.RDD[String] = [email protected] 分布式数据集操作之转换和动作 分布式数据集

美团Spark性能优化指南——基础篇

http://tech.meituan.com/spark-tuning-basic.html 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团?大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性

【转载】 Spark性能优化指南——基础篇

前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行原理 资源参数调优 写在最后的话 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的

Spark性能优化指南——基础篇转

前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作,应用范围与前景非常广泛.在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark.大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快.性能更高. 然而,通过Spark开发出高性能的大数据计算作业,并不是那么简单的.如果没有对Spar

Spark性能优化指南--基础篇

前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行原理 资源参数调优 写在最后的话 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的

memcached完全剖析--1. memcached的基础 _转

2008-07-10 memcached完全剖析--1. memcached的基础 翻译一篇技术评论社的文章,是讲memcached的连载.fcicq同学说这个东西很有用,希望大家喜欢. 发表日:2008/7/2 作者:长野雅广(Masahiro Nagano) 原文链接:http://gihyo.jp/dev/feature/01/memcached/0001 我是mixi株式会社开发部系统运营组的长野. 日常负责程序的运营.从今天开始,将分几次针对最近在Web应用的可扩展性领域 的热门话题m