[Spark]Spark-streaming通过Receiver方式实时消费Kafka流程(Yarn-cluster)

1.启动zookeeper
2.启动kafka服务(broker)
[[email protected] kafka_2.11-0.10.2.1]# ./bin/kafka-server-start.sh config/server.properties
3.启动kafka的producer(前提:已经创建好topic
[[email protected] kafka_2.11-0.10.2.1]# ./bin/kafka-console-producer.sh --broker-list master:9092 --topic test
4.启动kafka的consumer
[[email protected] kafka_2.11-0.10.2.1]#./bin/kafka-console-consumer.sh --zookeeper master:2181 --topic test --from-beginning
5.打jar包,将带有依赖的jar包上传到集群上
mvn clean assembly:assembly
6.编写启动脚本,启动任务 sh run_receiver.sh
/usr/local/src/spark-2.0.2-bin-hadoop2.6/bin/spark-submit        --class com.skyell.streaming.ReceiverFromKafka        --master yarn-cluster         --executor-memory 1G         --total-executor-cores 2         --files $HIVE_HOME/conf/hive-site.xml         ./Spark8Pro-2.0-SNAPSHOT-jar-with-dependencies.jar
监控任务及查看日志

http://master:8088/cluster

关闭spark streaming任务
yarn application -kill application_1539421032843_0093

数据驱动变革-云将 个人博客地址

原文地址:https://www.cnblogs.com/skyell/p/10048189.html

时间: 2024-11-05 14:54:37

[Spark]Spark-streaming通过Receiver方式实时消费Kafka流程(Yarn-cluster)的相关文章

spark streaming从指定offset处消费Kafka数据

spark streaming从指定offset处消费Kafka数据 2017-06-13 15:19 770人阅读 评论(2) 收藏 举报 分类: spark(5) 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中

第90讲,Spark streaming基于kafka 以Receiver方式获取数据 原理和案例实战

1:SparkSteaming基于kafka获取数据的方式,主要有俩种,即Receiver和Derict,基于Receiver的方式,是sparkStreaming给我们提供了kafka访问的高层api的封装,而基于Direct的方式,就是直接访问,在sparkSteaming中直接去操作kafka中的数据,不需要前面的高层api的封装.而Direct的方式,可以对kafka进行更好的控制!同时性能也更好. 2:实际上做kafka receiver的时候,通过receiver来获取数据,这个时候

.Spark Streaming(上)--实时流计算Spark Streaming原理介

Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP

Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming介绍

[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送–Spark入门实战系列>获取 1 Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理

从Storm和Spark Streaming学习流式实时分布式计算系统的设计要点

0. 背景 最近我在做流式实时分布式计算系统的架构设计,而正好又要参见CSDN博文大赛的决赛.本来想就写Spark源码分析的文章吧.但是又想毕竟是决赛,要拿出一些自己的干货出来,仅仅是源码分析貌似分量不够.因此,我将最近一直在做的系统架构的思路整理出来,形成此文.为什么要参考Storm和Spark,因为没有参照效果可能不会太好,尤其是对于Storm和Spark由了解的同学来说,可能通过对比,更能体会到每个具体实现背后的意义. 本文对流式系统出现的背景,特点,数据HA,服务HA,节点间和计算逻辑间

Spark Structured Streaming框架(3)之数据输出源详解

Spark Structured streaming API支持的输出源有:Console.Memory.File和Foreach.其中Console在前两篇博文中已有详述,而Memory使用非常简单.本文着重介绍File和Foreach两种方式,并介绍如何在源码基本扩展新的输出方式. 1. File Structured Streaming支持将数据以File形式保存起来,其中支持的文件格式有四种:json.text.csv和parquet.其使用方式也非常简单只需设置checkpointLo

Spark Structured Streaming框架(2)之数据输入源详解

Spark Structured Streaming目前的2.1.0版本只支持输入源:File.kafka和socket. 1. Socket Socket方式是最简单的数据输入源,如Quick example所示的程序,就是使用的这种方式.用户只需要指定"socket"形式并配置监听的IP和Port即可. val scoketDF = spark.readStream .format("socket") .option("host","

Spark进阶 大数据离线与实时项目实战 完整版

第1章 课程介绍&学习指南本章会对这门课程进行说明并进行学习方法介绍. 第2章 Redis入门Redis是目前最火爆的内存数据库之一,通过在内存中读写数据,大大提高了读写速度.本章将从Redis特性.应用场景出发,到Redis的基础命令,再到Redis的常用数据类型实操,最后通过Java API来操作Redis,为后续实时处理项目打下坚实的基础... 第3章 HBase入门HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:

[spark]Spark Streaming教程

? (一)官方入门示例 废话不说,先来个示例,有个感性认识再介绍. 这个示例来自spark自带的example,基本步骤如下: (1)使用以下命令输入流消息: $ nc -lk 9999 (2)在一个新的终端中运行NetworkWordCount,统计上面的词语数量并输出: $ bin/run-example streaming.NetworkWordCount localhost 9999 (3)在第一步创建的输入流程中敲入一些内容,在第二步创建的终端中会看到统计结果,如: 第一个终端输入的内