各种attention注意力机制之间的比较

1、Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, Yoshua Bengio ; Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:2048-2057, 2015.

这篇文章中提出了hard attention与soft attention两种注意力机制,二者的通用计算框架相同,区别在于注意力计算方式的不同:

1)通用计算框架

步骤一:

yt-1表示热编码的词向量,ht表示隐藏层,Zt表示(头部有箭头)上下文向量

软、硬注意力的主要区别在于φ函数的计算方式的不同,ai表示抽取出的图像特征向量。

说完“硬”的 attention,再来说说“软”的 attention。 相对来说 soft attention 很好理解,在 hard attention 里面,每个时刻 t 模型的序列 [ St1,…,StL ] 只有一个取 1,其余全部为 0,

也就是说每次只 focus 一个位置,而 soft attention 每次会照顾到全部的位置,只是不同位置的权重不同罢了。这时 Zt 即为 ai 的加权求和:

参考:https://blog.csdn.net/u011414416/article/details/51057789

原文地址:https://www.cnblogs.com/AugusXing/p/10130399.html

时间: 2024-11-09 02:03:06

各种attention注意力机制之间的比较的相关文章

关于《注意力模型--Attention注意力机制》的学习

关于<注意力模型--Attention注意力机制>的学习 此文大部分参考深度学习中的注意力机制(2017版) 张俊林的博客,不过添加了一些个人的思考与理解过程.在github上找到一份基于keras框架实现的可运行的注意模型代码:Attention_Network_With_Keras (对这个模型的详细理解可参考:<注意力模型的一个实例代码的实现与分析>) 注意力模型:对目标数据进行加权变化.人脑的注意力模型,说到底是一种资源分配模型,在某个特定时刻,你的注意力总是集中在画面中的

Attention注意力机制介绍

什么是Attention机制 Attention机制通俗的讲就是把注意力集中放在重要的点上,而忽略其他不重要的因素.其中重要程度的判断取决于应用场景,拿个现实生活中的例子,比如1000个人眼中有1000个哈姆雷特.根据应用场景的不同,Attention分为空间注意力和时间注意力,前者用于图像处理,后者用于自然语言处理.本文主要介绍Attention机制在Seq2seq中的应用. 为什么要用Attention机制 我们知道在Seq2seq模型中,原始编解码模型的encode过程会生成一个中间向量C

深度学习之注意力机制(Attention Mechanism)

这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制与Encoder-Decoder框架: 4.自注意力模型的原理. 一.注意力机制可以解决什么问题? 神经网络中的注意力机制(Attention Mechanism)是在计算能力有限的情况下,将计算资源分配给更重要的任务,同时解决信息超载问题的一种资源分配方案.在神经网络学习中,一般而言模型的参数越多则

Hulu机器学习问题与解答系列 | 十二:注意力机制

几天不见想死你们啦~ 今儿的课题很好玩,跟上队伍一起来读! 今天的内容是 [注意力机制] 场景描述 作为生物体,我们的视觉和听觉会不断地获得带有序列的声音和图像信号,并交由大脑理解:同时我们在说话.打字.开车等过程中,也在不断地输出序列的声音.文字.操作等信号.在互联网公司日常要处理的数据中,也有很多是以序列形式存在的,例如文本.语音.视频.点击流等.因此如何更好的对序列进行建模,一向是研究的要点. 为了解决这些问题,注意力机制(attention mechanism)被引入Seq2Seq模型中

自注意力机制(Self-attention Mechanism)——自然语言处理(NLP)

近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all you need>论文受到了大家广泛关注,自注意力(self-attention)机制开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.对这篇论文中的self-attention以及一些相关工作进行了学习

机器翻译注意力机制及其PyTorch实现

前面阐述注意力理论知识,后面简单描述PyTorch利用注意力实现机器翻译 Effective Approaches to Attention-based Neural Machine Translation 简介 Attention介绍 在翻译的时候,选择性的选择一些重要信息.详情看这篇文章 . 本着简单和有效的原则,本论文提出了两种注意力机制. Global 每次翻译时,都选择关注所有的单词.和Bahdanau的方式 有点相似,但是更简单些.简单原理介绍. Local 每次翻译时,只选择关注一

[转] 深度学习中的注意力机制

from: https://zhuanlan.zhihu.com/p/37601161 注意力模型最近几年在深度学习各个领域被广泛使用,无论是图像处理.语音识别还是自然语言处理的各种不同类型的任务中,都很容易遇到注意力模型的身影.所以,了解注意力机制的工作原理对于关注深度学习技术发展的技术人员来说有很大的必要. 人类的视觉注意力 从注意力模型的命名方式看,很明显其借鉴了人类的注意力机制,因此,我们首先简单介绍人类视觉的选择性注意力机制. 图1 人类的视觉注意力 视觉注意力机制是人类视觉所特有的大

Seq2Seq模型与注意力机制

Seq2Seq模型 基本原理 核心思想:将一个作为输入的序列映射为一个作为输出的序列 编码输入 解码输出 解码第一步,解码器进入编码器的最终状态,生成第一个输出 以后解码器读入上一步的输出,生成当前步输出 组成部件: Encoder Decoder 连接两者的固定大小的State Vector 解码方法 最核心部分,大部分的改进 贪心法 选取一种度量标准后,在当前状态下选择最佳的一个结果,直到结束 计算代价低 局部最优解 集束搜索(Beam Search) 启发式算法 保存beam size个当

深度学习之注意力机制

一.前提 该篇为基于实现LSTM中文情感倾向分析的基础上,为提高情感倾向预测的准确度,而引入的一个注意力机制模块,通过翻阅相关学术文献和其他资料所作的归纳总结. 二.注意力机制简介 简单来说,注意力机制与人类视觉注意力相似,正如人在看事物一样,会选择重点的对象,而忽略次要对象.近几年来,注意力机制在图片处理领域和自然语言处理领域得到广泛的应用,并展现出显著的效果.注意力机制主要是利用神经网络找到输入特征的有效部分. 三.Encoder-Decoder模型 注意力机制的框架主要是基于Encoder