网络流24题之最长不下降子序列问题

P2766 最长不下降子序列问题

题目描述

?问题描述:

给定正整数序列x1,...,xn 。

(1)计算其最长不下降子序列的长度s。

(2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列。

(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的不下降子序列。

?编程任务:

设计有效算法完成(1)(2)(3)提出的计算任务。

n<=500

输入输出格式

输入格式:

第1 行有1个正整数n,表示给定序列的长度。接下来的1 行有n个正整数n:x1, ..., xn。

输出格式:

第1 行是最长不下降子序列的长度s。

第2行是可取出的长度为s 的不下降子序列个数。

第3行是允许在取出的序列中多次使用x1和xn时可取出的长度为s 的不下降子序列个数。

输入样例:

4

3 6 2 5

输出样例:

2

2

3

第一问可以n2DP,而nlogn不行,为什么?

因为在n2DP中f[i]表示以这个数为末尾前i个数最长不下降子序列的长度。

但是nlogn仅仅存储了前几个数,之后求出全局答案。

第2问和第3问就用到了这个东西。

还是那句话:建模真的很难

把一个点拆成2个点,编号为i和i+n正向连一条边权为1的边,反向连一条边权为0的边,可以反悔。之后建一个超级原点和超级汇点把f[i]=第一问的ans的点连一条边。

之后跑网络流就行了。

第3问就是把1和原点,n和汇点边权设成inf再次跑网络流就行了。

原文地址:https://www.cnblogs.com/342zhuyongqi/p/9808290.html

时间: 2024-09-29 00:12:32

网络流24题之最长不下降子序列问题的相关文章

【网络流24题】最长不下降子序列(最大流,动态规划)

[网络流24题]最长不下降子序列(最大流,动态规划) 题面 Cogs 题解 很有趣的一道题目 尽管我自己还是有一些懵逼 第一问,直接大力DP一下,不解释了 第二问,考虑到一个长度为ans的子序列的开头 他的dp值一定等于ans, 所以,如果一个点的dp值为ans,就从源点连过去,容量为1 因为每个数只能用一次,因此拆点 自己向自己的新点连容量为1的边 一个子序列的结束的位置其dp值必定为1 所以从dp值为1的新点向汇点连边,容量为1 接下来考虑点与点之间的关系 如果dp[i]=dp[j]+1 并

「网络流24题」最长不下降子序列问题

传送门:>Here< 题意: 给定正整数序列$x_1,...,x_n$ (1)计算其最长不下降子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列. (3)如果允许在取出的序列中多次使用$x_1$和$x_n$,则从给定序列中最多可取出多少个长度为$s$的不下降子序列. 思路分析 题意首先就很坑:注意第二问中的取出二字,意味着一个数字最多只能存在于一个LIS中.所以才会有第三问的假设 第一问很简单,直接暴力$O(n^2)$就好了 后面的两问需要借助于网络流.很容易想到

网络流24题之最长不下降子序列

对于第一问直接n^2dp计算 第二问建图跑网络流 第三问将起始与结尾流量开大 建边的时候要严格按照子序列求法建 By:大奕哥 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=10005; 4 int head[N],d[N],f[N],a[N]; 5 int n,m,cnt=-1,s,t,sum; 6 struct node{ 7 int to,nex,w; 8 }e[1000005]; 9 void add(int

【网络流24题】最长递增子序列

Description 给定正整数序列x1,..., xn. (1)计算其最长递增子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的递增子序列. (3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列. 设计有效算法完成(1)(2)(3)提出的计算任务 Input 第1 行有1个正整数n(n<=500),表示给定序列的长度. 接下来的1 行有n个正整数x1,..., xn. Output 第1 行是最长递增子序列的长度s. 第2行是可

【网络流24题】 最长递增子序列问题

(题目复制自洛谷) 题目描述 给定正整数序列x1,...,xn . (1)计算其最长递增子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的递增子序列. (3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列. 编程任务: 设计有效算法完成(1)(2)(3)提出的计算任务. 输入输出格式 输入格式: 第1 行有1个正整数n,表示给定序列的长度.接下来的1 行有n个正整数n:x1, ..., xn. 输出格式: 第1 行是最长递增子序列的

[cogs731] [网络流24题#6] 最长递增子序列 [网络流,最大流]

[转hzwer]第一问是LIS,动态规划求解,第二问和第三问用网络最大流解决.首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K.1.把序列每位i拆成两个点<i.a>和<i.b>,从<i.a>到<i.b>连接一条容量为1的有向边.2.建立附加源S和汇T,如果序列第i位有F[i]=K,从S到<i.a>连接一条容量为1的有向边.3.如果F[i]=1,从<i.b>到T连接一条容量为1的有向边.4.如果j

网络流24题之最长k可重线段集问题

对于每个线段拆成两个点,如同之前一样建图,由于可能出现垂直于x轴的 所以建图由i指向i~ 继续最小费用最大流 By:大奕哥 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=10000005,inf=1e9; 4 int head[N],d[N],f[N],l1[N],r1[N],l2[N],r2[N],a[N],s=1e9,t,n,k,cnt=-1; 5 long long cost; 6 bool v[N]; 7

*LOJ#6227. 「网络流 24 题」最长k可重线段集问题

$n \leq 500$条平面上的线段,问一种挑选方法,使得不存在直线$x=p$与挑选的直线有超过$k$个交点,且选得的直线总长度最长. 横坐标每个点开一个点,一条线段就把对应横坐标连一条容量一费用(-长度)的边:点$x$向点$x+1$连一条容量$k$费用0的边.这里的$k$边限制的是直线上其他不经过这里的地方. 这里有个trick就是有与$x$轴垂直的线段.直接判掉会wa.为此把坐标扩大两倍,如果$l=r$那么$r++$否则$l++$,相当于把一个点拆成两个. 原文地址:https://www

「网络流 24 题」最长 k 可重区间集

给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度. 区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T$连边$(k,0)$. 对于每个区间$(l,r)$, $l$与$r$连边$(1,l-r)$. 最小费用相反数就为最大长度 #include <iostream> #include <sstream> #include <algorithm> #include <cst