MT【219】构造二次函数

(2012北大保送)已知$f(x)$是二次函数,且$a,f(a),f(f(a)),f(f(f(a)))$是正项等比数列;求证:$f(a)=a$


构造二次函数$f(x)=qx$,则$a,f(a),f(f(a))$是该二次函数的三个根,故他们当中必有两个相等,从而易得$q=1$,故$f(a)=a$

原文地址:https://www.cnblogs.com/mathstudy/p/9695263.html

时间: 2024-11-14 08:25:18

MT【219】构造二次函数的相关文章

MT【39】构造二次函数证明

这种构造二次函数的方法最早接触的应该是在证明柯西不等式时: 再举一例: 最后再举个反向不等式的例子: 评:此类题目的证明是如何想到的呢?他们都有一个明显的特征$AB\ge(\le)C^2$,此时构造二次函数利用$\Delta$证明,效果非常理想.

E - Rebuild UVALive - 7187 (二次函数极值问题)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5531 Problem Description Archaeologists find ruins of Ancient ACM Civilization, and they want to rebuild it. The ruins form a closed path on an x-y plane, which has n endpoints. The endpoints locate on (

Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法

Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(Steepest Descent),可用于寻找函数的局部最小值.梯度下降的思路为,函数值在梯度反方向下降是最快的,只要沿着函数的梯度反方向移动足够小的距离到一个新的点,那么函数值必定是非递增的,如图1所示. 梯度下降思想的数学表述如下: b=a−α∇F(a)⇒f(a)≥f(b)(1)(1)b=a−α∇F

腾讯课堂目标2017初中数学联赛集训队作业题解答-10

课程链接:目标2017初中数学联赛集训队-1(赵胤授课) 1. 已知二次函数 $y = 3ax^2 + 2bx - (a + b)$, 当 $x = 0$ 和 $x = 1$ 时, $y$ 的值均为正数, 则当 $0 < x < 1$ 时, 抛物线与 $x$ 轴的交点个数是多少? 解答: 令 $f(x) = 3ax^2 + 2bx - (a + b)$, $$\Rightarrow \begin{cases}f(0) = -(a + b) > 0\\ f(1) = 3a + 2b - (

[深入理解Android卷一全文-第七章]深入理解Audio系统

由于<深入理解Android 卷一>和<深入理解Android卷二>不再出版,而知识的传播不应该由于纸质媒介的问题而中断,所以我将在CSDN博客中全文转发这两本书的全部内容. 第7章  深入理解Audio系统 本章主要内容 ·  具体分析AudioTrack. ·  具体分析AudioFlinger. ·  具体分析AudioPolicyService. 本章涉及的源代码文件名称及位置 以下是本章分析的源代码文件名称及其位置. ·  AudioTrack.java framewor

MT【37】二次函数与整系数有关的题

解析: 评:两根式是不错的考虑方向,一方面二次函数两根式之前有相应的经验,另一方面这里$\sqrt{\frac{b^2}{4}-c}$正好和两个根有关系.

MT【61】含参数二次函数最大最小值

评:此类题目在高考中作为压轴题也曾考过,一般通性通法都如上面的做法,但是我们如果可以站在包络的角度,很多问题将变得很清晰:

MT【182】系数奇怪的二次函数

设函数$f(x)=3ax^2-2(a+b)x+b,$其中$a>0,b\in R$证明:当$0\le x\le 1$时,$|f(x)|\le \max\{f(0),f(1)\}$ 分析:由$a>0$知道$\max\{f(0),f(1)\}=\max\{|f(0)|,|f(1)|\}$则\begin{align*} |f(x)| & \le |(3x^2-4x+1)f(0)+(3x^2-2x)f(1)| \\ &\le(|3x^2-4x+1|+|3x^2-2x|)\max\{|f(

MT【223】二次函数最大最小

若函数$f(x)=ax^2+20x+14(a>0)$对任意实数$t$,在闭区间$[t-1,t+1]$上总存在两实数$x_1,x_2$,使得$|f(x_1)-f(x_2)|\ge8$成立,则实数$a$的最小值为____ 解答:记$h(t)=\max\limits_{x_1,x_2}\{|f(x_1)-f(x_2)|\}$,由题意$h(t)_{min}\ge8$$\because 2a=f(t+1)+f(t-1)-2f(t)\le 2f(x)_{max}-2f(x)_{min}=2h(t),\the