贝叶斯定理推导(Bayes' Theorem Induction)

这里用Venn diagram来不严谨地推导一下贝叶斯定理。

假设A和B为两个不相互独立的事件。

交集(intersection): 

上图红色部分即为事件A和事件B的交集。

并集(union): 

由Venn diagram可以看出,在事件B已经发生的情况下,事件A发生的概率为事件A和事件B的交集除以事件B:

同理,在事件A已经发生的情况下,事件B发生的概率为事件A和事件B的交集除以事件A:

注:表示 A,B 事件同时发生的概率,如果 A 和 B 是相互独立的两个事件,那么:

由上面的公式可以得到:

然后,我们就可以得到贝叶斯定理

其中: 是先验概率(prior probability),是条件概率,是后验概率(posterior probability)。

注:条件概率(conditional probabilities): P(B|A) ---> 给定事件A,事件B发生的概率(probability of event B occuring given event A)。

又根据Law of Total Probability: 

注:表示事件A不发生的概率。

这个可以用probability tree来帮助理解一下:

因此,贝叶斯定理可以扩展为: 

贝叶斯定理通常用于由已知的先验概率和条件概率,推算出后验概率。

举一个简单的例子:某地平时下雨的概率是0.3,小明平时带伞的概率是0.4,小明下雨天带伞的概率是0.8。某一天小明带了伞,请问这天下雨的概率是多少?

解答:也就是需要求P(下雨|小明带伞),把上面的数字代入公式即:

这个例子的先验概率是平时下雨的概率0.3,由于我们已知小明带了伞这一信息,因此我们可以估算出后验概率,也就是当天下雨的概率是0.6。

先验概率是怎么得来的呢?通常是人们的经验总结或者说是估算,比如说某地一个月里面下了3天雨,我们就估算某地平时下雨的概率是0.3。

如果条件不止一个呢?让我们把上面的例子改一下:某地平时下雨的概率是0.3,平时刮风的概率是0.4,下雨天刮风的概率是0.6,小明平时带伞的概率是0.4,小明下雨天带伞的概率是0.8。某一天小明带了伞,且当天在刮风,请问这天下雨的概率是多少?

解答:也就是需要求P(下雨|小明带伞,刮风),把上面的数字代入公式即:

注:假设小明带伞和刮风之间没有关联,两条件互不影响。

长久以来,人们信奉的是频率主义。比如把一枚硬币抛10000次,有5000次正面朝上,5000次反面朝上,那么我们就可以得知抛这枚硬币,其正面朝上的概率是0.5。但是通常,我们需要某一事件发生足够多的次数,我们才可以观察到它的规律。

在现实生活中,很多事件并不会在相对较短的时间内多次发生。这时候,贝叶斯定理就发挥作用了。比如说我们想知道刮风天下雨的概率是多少,我们不用等10000个刮风天,看其中有几天下了雨。我们只需要估算出下雨天会刮风的概率,平时下雨的概率,平时刮风的概率,就可以估算出刮风天会下雨的概率是多少了。先验概率估算得不准确并没有关系,人们可以通过未来事件的发生情况,不断对后验概率做出调整。

贝叶斯定理推导(Bayes' Theorem Induction)

原文地址:https://www.cnblogs.com/HuZihu/p/9368355.html

时间: 2024-11-03 20:54:54

贝叶斯定理推导(Bayes' Theorem Induction)的相关文章

Bayes' theorem (贝叶斯定理)

前言 AI时代的到来一下子让人感觉到数学知识有些捉襟见肘,为了不被这个时代淘汰,我们需要不断的学习再学习.其中最常见的就是贝叶斯定理,这个定理最早由托马斯·贝叶斯提出. 贝叶斯方法的诞生源于他生前为解决一个"逆向概率"问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的.在贝叶斯写这篇论文之前,人们已经能够计算"正向概率",如"袋子里N个白球,M个黑球,随机抓一个,抓到白球的概率".而随之而来的另一个反过来的问题就是 "如果

数据挖掘中所需的概率论与数理统计知识

http://blog.csdn.net/v_july_v/article/details/8308762 数据挖掘中所需的概率论与数理统计知识 (关键词:微积分.概率分布.期望.方差.协方差.数理统计简史.大数定律.中心极限定理.正态分布) 导言:本文从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本文之压轴戏在本文第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态分布之神秘芳踪,知晓其前后发明历史由来),相信,每一个学过概率论与数理统计的朋友都有必要了解数理统计学简史,因为,

推荐系统中所需的概率论与数理统计知识

前言 一个月余前,在微博上感慨道,不知日后是否有无机会搞DM,微博上的朋友只看不发的围脖评论道:算法研究领域,那里要的是数学,你可以深入学习数学,将算法普及当兴趣.想想,甚合我意.自此,便从rickjin写的"正态分布的前世今生"开始研习数学. 如之前微博上所说,"今年5月接触DM,循序学习决策树.贝叶斯,SVM.KNN,感数学功底不足,遂补数学,从'正态分布的前后今生'中感到数学史有趣,故买本微积分概念发展史读,在叹服前人伟大的创造之余,感微积分概念模糊,复习高等数学上册,

【转载】贝叶斯推断及其互联网应用(一):定理简介

作者: 阮一峰 原文链接:http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html 一.什么是贝叶斯推断 贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质. 它是贝叶斯定理(Bayes' theorem)的应用.英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理. 贝叶斯推断与其他统计学推断方法截然不同.它建立在主观判

朴素贝叶斯分类器(一)

这两天看了下朴素贝叶斯分类器,在这里根据自己的理解做个简单笔记,也顺便整理一下思路. 一.简介 1. 什么是朴素贝叶斯分类器?    朴素贝叶斯分类器是一种应用基于独立假设的贝叶斯定理的简单概率分类器.基于独立假设的意思是假设样本每个特征与其他特征都不相关,例如,一个物体具有颜色.大小.重量和材质等特征,这些特征互不相关,即不管什么颜色不会影响大小,不管大小如何也不会影响其颜色. 2. 什么是贝叶斯定理? 贝叶斯定理(Bayes' theorem)是概率论中的一个结论,它跟随机变量和条件概率(C

贝叶斯推断及其互联网应用(一)

一年前的这个时候,我正在翻译Paul Graham的<黑客与画家>. 那本书大部分谈的是技术哲学,但是第八章却写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版)? 说实话,我没完全看懂那一章.那时,交稿截止日期已经过了,没时间留给我去啃概率论教科书了.我只好硬着头皮,按照字面意思把它译了出来.虽然交稿了,译文质量也还可以,但是心里很不舒服,下决心一定要搞懂它. 一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并没有想象的那么难.相反的,它的原理部分实际上很容易理解,

机器学习数学基础

数据挖掘中所需的概率论与数理统计知识 (关键词:微积分.概率分布.期望.方差.协方差.数理统计简史.大数定律.中心极限定理.正态分布) 导言:本文从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本文之压轴戏在本文第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态分布之神秘芳踪,知晓其前后发明历史由来),相信,每一个学过概率论与数理统计的朋友都有必要了解数理统计学简史,因为,只有了解各个定理.公式的发明历史,演进历程.相关联系,才能更好的理解你眼前所见到的知识,才能更好的运用之.

Bayesian Statistics for Genetics | 贝叶斯与遗传学

Common sense reduced to computation - Pierre-Simon, marquis de Laplace (1749–1827) Inventor of Bayesian inference 贝叶斯方法的逻辑十分接近人脑的思维:人脑的优势不是计算,在纯数值计算方面,可以说几十年前的计算器就已经超过人脑了. 人脑的核心能力在于推理,而记忆在推理中扮演了重要的角色,我们都是基于已知的常识来做出推理.贝叶斯推断也是如此,先验就是常识,在我们有了新的观测数据后,就可以

6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python)

6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation you’ve got into: You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importanc