【机器学习】(3)拟合度与最大似然估计

在大致了解了机器学习的算法分类(监督式、非监督式以及增强学习)和梯度算法后,今天我们来了解下拟合度和最大似然估计的相关问题。

一、最小二乘法的拟合度

监督式学习中一类典型的应用就是回归问题,基本的就是线性回归,即用一条直线去逼近训练集合。最小二乘法就是根据已有的训练集样本来确定拟合度最好的函数
曲线。但是由于选择一个什么样的曲线是人工决定的,而不同的曲线又具有不同的性质,从而导致不同函数模型使用最小二乘法的拟合度是不同的。以一个m个样本
的房屋价格和大小数据M为例,我们可以选择线性回归(用一条直线模拟),也可以选择使用一个三次曲线来模拟(存在上下峰值),但是最好的拟合或许是一个二
次曲线(抛物线)。对于一个本身分布近似抛物线的训练集来说,线性拟合明显是“欠拟合”的,而三次曲线则是“过拟合”的,效果都不如抛物线要来的好。所以
说,即便是监督式学习的回归问题,也存在一个拟合度的把握,而这非常依赖于研究人员自身的经验。这类函数模型确定后运用最小二乘法拟合的方法称作参数学
习,其要点是在训练学习前已经有了关于函数模型的一个判断(参数的个数是确定的);但是还有一类情况,训练集很复杂,我们很难直接假设一个模型,因此参数
的个数也许是随着样本集动态变化的,这类问题称作非参数学习。我们的方法是采用局部加权回归。

二、局部加权回归

对于线性回归问题LR来说,对于给定的假设函数H(X,θ),我们的目标是找到θ使得(H(X,θ)-Y)的平方最小,其实也就是要求针对已知训练集M来说H(X,θ)与样本的偏差最小,最后返回θ。

对于局部加权回归LWR来说,找到θ使得的值最小,其中的权值的意义在于,当我们测试一个新的样本值的时候,距离测试属性最近的一些样本训练集将发挥作用,权重较大,而距离该位置较远的样本值的影响则较小。因此局部加权回归的做法就是每次只使用新的数值位置附近的训练样本来进行拟合,每次计算都需要针对所有的训练集进行拟合。

三、最大似然概率

上述算法可以用最大似然概率进行推导,由于涉及较多的数学公式,这里不再证明。借着这个机会来复习下最大似然概率的知识。最大似然概率可以用来解决非参数模型的回归。其主要的思想就是,将含参数的概率函数H(X,θ)看作是θ的函数,当X已知的时候,就意味着从全体样本中随机抽出了m个样本,假设它们都是独立的,那么我从一个样本集中随机抽出这m个样本的概率应该是它们的概率乘积P(θ);若存在一个这样的函数假设模型,则这个模型中的参数θ应当使得P的值最大,即重新抽出这m个样本的可能最大。然后用这个似然估计去代替真实的θ。

这里讲的未免过于简单,详细的内容可以参考CSDN博友的文章:最大似然估计总结

时间: 2024-10-06 12:02:09

【机器学习】(3)拟合度与最大似然估计的相关文章

机器学习2-极大似然估计与贝叶斯估计

参数估计:最大似然.贝叶斯与最大后验 为什么会有参数估计呢?这要源于我们对所研究问题的简化和假设.我们在看待一个问题的时候,经常会使用一些我们所熟知的经典的模型去简化问题,就像我们看一个房子,我们想到是不是可以把它看成是方形一样.如果我们已经知道这个房子是三间平房,那么大体上我们就可以用长方体去描述它的轮廓.这个画房子的问题就从无数的可能性中,基于方圆多少里大家都住平房的经验,我们可以假设它是长方体,剩下的问题就是确定长宽高这三个参数了,问题被简化了.再如学生考试的成绩,根据既往的经验,我们可以

最小二乘法和最大似然估计

一:背景:当给出我们一些样本点,我们可以用一条直接对其进行拟合,如y= a0+a1x1+a2x2,公式中y是样本的标签,{x1,x2,x3}是特征,当我们给定特征的大小,让你预测标签,此时我们就需要事先知道参数{a1,a2}.而最小二乘法和最大似然估计就是根据一些给定样本(包括标签值)去对参数进行估计<参数估计的方法>.一般用于线性回归中获得参数进行拟合.而梯度下降方法主要用于逻辑回归分类问题中寻找最佳参数. 二:最小二乘法: 基本思想: 简单地说,最小二乘的思想就是要使得观测点和估计点的距离

B-概率论-极大似然估计

目录 极大似然估计 一.最大似然原理 二.极大似然估计 三.似然函数 四.极大似然函数估计值 五.求解极大似然函数 5.1 未知参数只有一个 5.2 位置参数有多个 5.3 总结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 极大似然估计 一.最大似然原理 二.极大似然估计 极大似然估计是建立在最大似然原理的基础上的一个统计方法.极大似然估计提供了一种给定观察数据来

极大似然估计

极大似然估计又称最大似然估计,对于一个已知的模型来说,还有些参数是不确定的,但是有了真实数据,那么这些参数可不可计算出呢?或者估计出最有可能的情况? 举个例子,例如有一组来自正态分布(也叫高斯分布)的样本数据,每个样本的数据都独立同分布,比如是正态分布,但正态分布的参数μ,σ都不知道,如果用极大似然估计的方法就可以用这些样本数据就可估计出正态分布中参数.概括起来说,就是用样本来估计总体情况,(调查问卷.人口普查等等其实就暗含这个原理). 假设总体X的分布为f(x:θ1,...θn),其中θ是未知

【MLE】最大似然估计Maximum Likelihood Estimation

模型已定,参数未知 最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独

转 通俗理解 最小二乘 和 最大似然估计

最大似然估计:现在已经拿到了很多个样本(你的数据集中所有因变量),这些样本值已经实现,最大似然估计就是去找到那个(组)参数估计值,使得前面已经实现的样本值发生概率最大.因为你手头上的样本已经实现了,其发生概率最大才符合逻辑.这时是求样本所有观测的联合概率最大化,是个连乘积,只要取对数,就变成了线性加总.此时通过对参数求导数,并令一阶导数为零,就可以通过解方程(组),得到最大似然估计值. 就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值! 换句话说,极大似然估

又看了一次EM 算法,还有高斯混合模型,最大似然估计

先列明材料: 高斯混合模型的推导计算(英文版): http://www.seanborman.com/publications/EM_algorithm.pdf 这位翻译写成中文版: http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 高斯混合模型的流程: http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html 最大似然估计: http://bl

先验概率、后验概率、似然估计,似然函数、贝叶斯公式

联合概率的乘法公式: (如果随机变量是独立的,则)  由乘法公式可得条件概率公式:, , 全概率公式:,其中 (,则,则可轻易推导出上式) 贝叶斯公式: 又名后验概率公式.逆概率公式:后验概率=似然函数×先验概率/证据因子.解释如下,假设我们根据“手臂是否很长”这个随机变量(取值为“手臂很长”或“手臂不长”)的观测样本数据来分析远处一个生物是猩猩类别还是人类类别(假设总共只有这2种类别).我们身处一个人迹罕至的深山老林里,且之前就有很多报道说这里有猩猩出没,所以无需观测样本数据就知道是猩猩的先验

统计参数的最大似然估计

已经介绍了统计参数的举估计,下面介绍另外一种估计,并且比较这两者. 对于一组样本,它们无条件是独立的.那么考虑到联合分布函数与边缘分布函数的关系,利用乘法原理,我们发现,样本的联合分布函数是: (离散) (连续) 又发现,它们是与总体同分布的:,那么连续的情况还可以写作: 现如今上面的式子中存在未知的参数,.把 L 换做以众多未知参数为元,就得到了: 称作是样本的似然函数. 当使得似然函数最大时的样本的参数估计,叫做样本的最大似然估计. 至于如何求之,仅仅是简单的多元函数求值而已. 发现 L 是