Introduction ----- Stanford Machine Learning(by Andrew NG)Course Notes

最近学习了coursera上面Andrew NG的Machine
learning课程,课程地址为:https://www.coursera.org/course/ml

在Introduction部分NG较为系统的概括了Machine
learning的一些基本概念,也让我接触了一些新的名词,这些名词在后续课程中会频繁出现:
















Machine Learning Supervised Learning Unsupervised Learning Regression Problem Classification Problem Octave
机器学习 有监督学习 无监督学习 回归问题 分类问题 Octave


What is Machine Learning

Definition: A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.


Example of Machine Learning

Suppose
your email program watches which emails you do or do not mark as spam, and based
on that learns how to better filter spam.

T:
Classifying emails as spam or not spam; (目标)

E:
Watching you label emails as spam or not spam; (算法 + 数据)

P:
The number (or fraction) of emails correctly classified as spam/not spam.
(评价方法->损失函数)


Supervised Learning

Definition: The
goal is, given a labeled training data, to learn a function h so that
h(x) is a “good” predictor for the corresponding value of
y. A pair (x, y) is called a training example,
x denoting “input” variables, also called features, and y
denoting “output” or target variable that we are trying to predict.

When
the target variable that we are trying to predict is continuous, we call the
learning problem a regression problem. When the target can take
on only a small number of discrete values, the learning problem is called a
classification problem.

A.Example of
Regression Problem

Suppose we have a dataset giving the living areas and prices of 11 houses from
Portland, Oregon:

















Living area (feet2) Price (1000$s)
450 100
600 140
620 210
... ...

We can plot this data:

So regression problem is to find a function h to fit these
points.

B.Example
of Classification Problem

Suppose we have a dataset giving the tumor size, patient age and malignant or
benign, we plot these data as follows:

So
classification problem is to find a function h to sperate these
points.

PS:
回归就是找出那个可以拟合样本的函数(平面,空间,...),分类就是找到那个可以把不同类别的样本分开的函数(平面,空间,...);在特定问题下,比如逻辑回归问题,分类问题就可以被视作回归问题来解决。


Unsupervised Learning

In the clustering problem, we are given a training set
{x(1), . . . , x(m)}, and want to group
the data into a few cohesive “clusters”. Here, no labels
y(i) are given. So, this is an unsupervised learning
problem.

PS:
无监督学习很多时候都暗指聚类算法,聚类算法又分硬聚类(K-means, 分层聚类,基于密度的等等)和软聚类(EM算法)。

Introduction ----- Stanford Machine Learning(by Andrew NG)Course
Notes,码迷,mamicode.com

Introduction ----- Stanford Machine Learning(by Andrew NG)Course
Notes

时间: 2024-10-10 09:29:46

Introduction ----- Stanford Machine Learning(by Andrew NG)Course Notes的相关文章

Logistic Regression & Regularization ----- Stanford Machine Learning(by Andrew NG)Course Notes

coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regression方法进行ctr的预测工作,因为当时主要使用的是成型的工具,对该算法本身并没有什么比较深入的认识,不过可以客观的感受到Logistic Regression的商用价值. Logistic Regression Model A. objective function       其中z的定义域是(-I

Neural Networks Representation ----- Stanford Machine Learning(by Andrew NG)Course Notes

Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了两个星期来介绍,可见Neural Networks内容之多.言归正传,通过之前的学习我们知道,使用非线性的多项式能够帮助我们建立更好的分类模型.但当遇特征非常多的时候,需要训练的参数太多,使得训练非常复杂,使得逻辑回归有心无力. 例如我们有100个特征,如果用这100个特征来构建一个非线性的多项式模

Linear Regression ----- Stanford Machine Learning(by Andrew NG)Course Notes

Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名词在后续课程中会频繁出现: Cost Function Linear Regression Gradient Descent Normal Equation Feature Scaling Mean normalization 损失函数 线性回归 梯度下降 正规方程 特征归一化 均值标准化 Mode

Advice for Applying Machine Learning & Machine Learning System Design----- Stanford Machine Learning(by Andrew NG)Course Notes

Adviceforapplyingmachinelearning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来我们要做的是高效地利用这些算法去解决实际问题,尽量不要把时间浪费在没有多大意义的尝试上,Advice for applying machine learning & Machinelearning system design 这两课介绍的就是在设计机器学习系统的时候,我们该怎么做? 假设我们实现了一个正则化的线性回

Neural Networks Learning----- Stanford Machine Learning(by Andrew NG)Course Notes

本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解决不了或效果不佳时人工神经网络方法才能显示出其优越性.尤其对问题的机理不甚了解或不能用数学模型表示的系统,如故障诊断.特征提取和预测等问题,人工神经网络往往是最有利的工具.另一方面, 人工神经网络对处理大量原始数据而不能用规则或公式描述的问题, 表现出极大的灵活性和自适应性. 神经网络模型解决问题的

机器学习 Machine Learning(by Andrew Ng)----第二章 单变量线性回归(Linear Regression with One Variable)

第二章 单变量线性回归(Linear Regression with One Variable) <模型表示(Model Representation)>                                                             <代价函数(Cost Function)>                                                          <梯度下降(Gradient Descent)

Optimization and Machine Learning(优化与机器学习)

这是根据(ShanghaiTech University)王浩老师的授课所作的整理. 需要的预备知识:数分.高代.统计.优化 machine learning:(Tom M. Mitchell) "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T,

(原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.coursera.org/course/ml 大家对于支持向量机(SVM)可能会比较熟悉,是个强大且流行的算法,有时能解决一些复杂的非线性问题.我之前用过它的工具包libsvm来做情感分析的研究,感觉效果还不错.NG在进行SVM的讲解时也同样建议我们使用此类的工具来运用SVM. (一)优化目标(Opt

(原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning &amp; Application Example

本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以及应用实例:photo OCR.课程地址为:https://www.coursera.org/course/ml (一)大规模机器学习 从前面的课程我们知道,如果我们的系统是high variance的,那么增加样本数会改善我们的系统,假设现在我们有100万个训练样本,可想而知,如果使用梯度下降法,