DES加密算法原理

DES的每个分组是64位,既明文和密钥都是64位(密钥实际用56位,每字节第8位为校验)。这个算法的核心是Feistel密码,由于其设计的巧妙,加密解密都用一个函数,具体原理请查阅其他资料。DES的流程基本是执行16轮下面的运算:

1 初始变换Initial Permutation

2 右边32位f函数

2.1 E置换

2.2 与轮密钥XOR

2.3 S盒替换

2.4 P置换

2.5 和左边32位XOR

3 左右交换,最终变换final permutation

需要特别注意的是,最后一轮是不需要做左右交换这一部的。

DES( Data Encryption Standard)算法,于1977年得到美国政府的正式许可,是一种用56位密钥来加密64位数据的方法。DES算法以被应用于许多需要安全加密的场合。(如:UNIX的密码算法就是以DES算法为基础的)。下面是关于如何实现DES算法的语言性描述.

1-1、变换密钥

取得64位的密钥,每个第8位作为奇偶校验位。

1-2、变换密钥。

1-2-1、舍弃64位密钥中的奇偶校验位,根据下表(PC-1)进行密钥变换得到56位的密钥,在变换中,奇偶校验位以被舍弃。

Permuted Choice 1 (PC-1)

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

1-2-2、将变换后的密钥分为两个部分,开始的28位称为C[0],最后的28位称为D[0]。

1-2-3、生成16个子密钥,初始I=1。

1-2-3-1、同时将C[I]、D[I]左移1位或2位,根据I值决定左移的位数。见下表

I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

左移位数: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

1-2-3-2、将C[I]D[I]作为一个整体按下表(PC-2)变换,得到48位的K[I]

 

Permuted Choice 2 (PC-2)

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

1-2-3-3、从1-2-3-1处循环执行,直到K[16]被计算完成。

 

2、处理64位的数据

2-1、取得64位的数据,如果数据长度不足64位,应该将其扩展为64位(例如补零)

2-2、将64位数据按下表变换(IP)

Initial Permutation (IP)

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

2-3、将变换后的数据分为两部分,开始的32位称为L[0],最后的32位称为R[0]。

2-4、用16个子密钥加密数据,初始I=1。

2-4-1、将32位的R[I-1]按下表(E)扩展为48位的E[I-1]

Expansion (E)

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

2-4-2、异或E[I-1]和K[I],即E[I-1] XOR K[I]

2-4-3、将异或后的结果分为8个6位长的部分,第1位到第6位称为B[1],第7位到第12位称为B[2],依此类推,第43位到第48位称为B[8]。

2-4-4、按S表变换所有的B[J],初始J=1。所有在S表的值都被当作4位长度处理。

2-4-4-1、将B[J]的第1位和第6位组合为一个2位长度的变量M,M作为在S[J]中的行号。

2-4-4-2、将B[J]的第2位到第5位组合,作为一个4位长度的变量N,N作为在S[J]中的列号。

2-4-4-3、用S[J][M][N]来取代B[J]。

Substitution Box 1 (S[1])

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S[2]

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S[3]

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S[4]

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S[5]

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S[6]

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S[7]

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S[8]

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

2-4-4-4、从2-4-4-1处循环执行,直到B[8]被替代完成。

2-4-4-5、将B[1]到B[8]组合,按下表(P)变换,得到P。

Permutation P

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

2-4-6、异或P和L[I-1]结果放在R[I],即R[I]=P XOR L[I-1]。

2-4-7、L[I]=R[I-1]

2-4-8、从2-4-1处开始循环执行,直到K[16]被变换完成。

2-4-5、组合变换后的R[16]L[16](注意:R作为开始的32位),按下表(IP-1)变换得到最后的结果。

Final Permutation (IP**-1)

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

以上就是DES算法的描述。

DES算法理论

本世纪五十年代以来,密码学研究领域出现了最具代表性的两大成就。其中之一就是1971年美国学者塔奇曼 (Tuchman)和麦耶(Meyer)根据信息论创始人香农(Shannon)提出的“多重加密有效性理论”创立的,后于1977年由美国国家标准局颁布的数据加密标准。

DES密码实际上是Lucifer密码的进一步发展。它是一种采用传统加密方法的区组密码。

它的算法是对称的,既可用于加密又可用于解密。

美国国家标准局1973年开始研究除国防部外的其它部门的计算机系统的数据加密标准,于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告。 加密算法要达到的目的通常称为DES密码算法要求主要为以下四点:

提供高质量的数据保护,防止数据未经授权的泄露和未被察觉的修改;具有相当高的复杂性,使得破译的开销超过可能获得的利益,同时又要便于理解和掌握 DES密码体制的安全性应该不依赖于算法的保密,其安全性仅以加密密钥的保密为基础实现经济,运行有效,并且适用于多种完全不同的应用。

1977年1月,美国政府颁布:采纳IBM公司设计的方案作为非机密数据的正式数据加密标准(DES棗Data Encryption Standard)。

  目前在这里,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。

  DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。

  DES算法是这样工作的:如Mode为加密,则用Key 去把数据Data进行加密, 生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。

  通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高数据的保密性,这正是现在金融交易网络的流行做法。

  DES算法详述

  DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:

58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,

  62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,

  57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,

  61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,

  即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。

  经过26次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:

  40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,

  38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,

  36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,

  34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,

放大换位表

  32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,

  12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,

  22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,

单纯换位表

  16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,

  2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,

  在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。下面给出选择函数Si(i=1,2......8)的功能表:

选择函数Si

S1:

  14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,

  0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,

  4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,

  15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,

S2:

  15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,

  3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,

  0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,

  13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,

S3:

  10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,

  13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,

  13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,

  1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,

S4:

  7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,

  13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,

  10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,

  3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,

S5:

  2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,

  14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,

  4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,

  11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,

S6:

  12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,

  10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,

  9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,

  4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,

S7:

  4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,

  13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,

  1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,

  6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,

S8:

  13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,

  1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,

  7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,

  2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,

在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。

  现设输入为: D=D1D2D3D4D5D6

令:列=D2D3D4D5

  行=D1D6

  然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法

  从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行:

循环左移位数

1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1

  以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。

DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。而56位长的密钥的穷举空间为256,这意味着如果一台计算机的速度是每一秒种检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的时间,可见,这是难以实现的,当然,随着科学技术的发展,当出现超高速计算机后,我们可考虑把DES密钥的长度再增长一些,以此来达到更高的保密程度。

  由上述DES算法介绍我们可以看到:DES算法中只用到64位密钥中的其中56位,而第8、16、24、......64位8个位并未参与DES运算,这一点,向我们提出了一个应用上的要求,即DES的安全性是基于除了8,16,24,......64位外的其余56位的组合变化256才得以保证的。因此,在实际应用中,我们应避开使用第8,16,24,......64位作为有效数据位,而使用其它的56位作为有效数据位,才能保证DES算法安全可靠地发挥作用。如果不了解这一点,把密钥Key的8,16,24,..... .64位作为有效数据使用,将不能保证DES加密数据的安全性,对运用DES来达到保密作用的系统产生数据被破译的危险,这正是DES算法在应用上的误区,是各级技术人员、各级领导在使用过程中应绝对避免的,而当今各金融部门及非金融部门,在运用DES工作,掌握DES工作密钥Key的领导、主管们,极易忽略,给使用中貌似安全的系统,留下了被人攻击、被人破译的极大隐患。

DES算法应用误区的验证数据

  笔者用Turbo C编写了DES算法程序,并在PC机上对上述的DES 算法的应用误区进行了骓,其验证数据如下:

Key: 0x30 0x30 0x30 0x30......0x30(8个字节)

Data: 0x31 0x31 0x31 0x31......0x31(8个字节)

Mode: Encryption

结果:65 5e a6 28 cf 62 58 5f

  如果把上述的Key换为8个字节的0x31,而Data和Mode均不变,则执行DES 后得到的密文完全一样。类似地,用Key:8个0x32和用Key:8个0x33 去加密Data (8 个0x31),二者的图文输出也是相同的:5e c3 ac e9 53 71 3b ba

我们可以得到出结论:

Key用0x30与用0x31是一样的;

Key用0x32与用0x33是一样的,......

  当Key由8个0x32换成8个0x31后,貌似换成了新的Key,但由于0x30和0x31仅仅是在第8,16,24......64有变化,而DES算法并不使用Key的第8,16,......64位作为Key的有效数据位,故:加密出的结果是一样的。

DES解密的验证数据:

Key: 0x31 0x31......0x31(8个0x31)

Data: 65 5e a6 28 cf 62 58 5f

Mode: Decryption

结果:0x31 0x31......0x31(8个0x31)

  由以上看出:DES算法加密与解密均工作正确。唯一需要避免的是:在应用中,避开使用Key的第8,16......64位作为有效数据位,从而便避开了DES 算法在应用中的误区。

避开DES算法应用误区的具体操作

  在DES密钥Key的使用、管理及密钥更换的过程中,应绝对避开DES 算法的应用误区,即:绝对不能把Key的第8,16,24......64位作为有效数据位,来对Key 进行管理。这一点,特别推荐给金融银行界及非金融业界的领导及决策者们,尤其是负责管理密钥的人,要对此点予以高度重视。有的银行金融交易网络,利用定期更换DES密钥Key的办法来进一步提高系统的安全性和可靠性,如果忽略了上述应用误区,那么,更换新密钥将是徒劳的,对金融交易网络的安全运行将是十分危险的,所以更换密钥一定要保证新Key与旧Key真正的不同,即除了第8,16,24,...64位外其它位数据发生了变化,请务必对此保持高度重视.

DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位.

其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:

58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,

  62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,

  57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,

  61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,

  即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。

  经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:

  40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,

  38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,

  36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,

  34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,

放大换位表

  32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,

  12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,

  22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,

单纯换位表

  16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,

  2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,

  在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。下面给出选择函数Si(i=1,2......8)的功能表:

选择函数Si

S1:

  14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,

  0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,

  4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,

  15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,

S2:

  15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,

  3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,

  0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,

  13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,

S3:

  10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,

  13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,

  13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,

  1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,

S4:

  7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,

  13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,

  10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,

  3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,

S5:

  2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,

  14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,

  4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,

  11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,

S6:

  12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,

  10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,

  9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,

  4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,

S7:

  4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,

  13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,

  1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,

  6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,

S8:

  13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,

  1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,

  7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,

  2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,

在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。

  现设输入为: D=D1D2D3D4D5D6

令:列=D2D3D4D5

  行=D1D6

  然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法

  从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行:

循环左移位数

1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1

  以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。

DES加密算法原理,布布扣,bubuko.com

时间: 2024-10-10 07:19:33

DES加密算法原理的相关文章

DES加密算法详细原理以及Java代码实现

本周的密码学实验要求使用任意编程语言来实现des加密算法,于是我在查阅了相关资料后有了以下成果. 首先,DES算法作为经典的分块密码(block cipher),其主要的实现过程由两部分组成,分别是密钥的生成以及明文的处理. 加密的大致流程如图所示 作为分块密码,密钥的输入以及明文的输入均为64位2进制数. 下面首先来说密钥的生成过程. 密钥处理部分如图所示 密钥的输入为64位,例如00010011 00110100 01010111 01111001 10011011 10111100 110

JAVA使用DES加密算法加密解密

程序中使用了.properties文件作为参数配置文档,好处是灵活配置各项参数 一旦对数据库的一些参数进行了配置,势必涉及数据库的IP,端口,用户名和密码 properties文件全是unicode编码明文存储,程序打包交付后,其他人能够很容易使用解压软件打开jar查看你的.properties文件 所以一些敏感变量需要加密处理 首先需要了解一些基本的加密算法,比如MD5,比如DES和RSA MD5是一种不可逆的加密算法,使用散列后特征码的方式表现需要加密的字符或者文件,常用在系统登陆的密码比对

论加密算法原理及其重要性

为什么要进行数据加密? 数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为“密文”,使其只能在输入相应的密钥之后才能显示出本来内容,通过这样的途径来达到保护数据不被非法人窃取.阅读的目的. 该过程的逆过程为解密,即将该编码信息转化为其原来数据的过程. 加密算法分类: 加密操作类型: 代换 置换 多重加密 所用的密钥个数 对称加密算法 公开加密算法 一:对称加密算法 亦称为常规/单密加密 发送方和接收方共享相同的密钥 所有经典加密都是对称加密,是在

加密算法原理及DNS服务原理

1.简述常见加密算法及常见加密算法原理,最好使用图例解说在安全领域,利用密钥加密算法来对通信的过程进行加密是一种常见的安全手段.利用该手段能够保障数据安全通信的三个目标 1.数据的保密性,防止用户的数据被窃取或泄露: 2.保证数据的完整性,防止用户传输的数据被篡改: 3.通信双方的身份确认,确保数据来源与合法的用户: 而常见的密钥加密算法类型大体可以分为三类:对称加密.非对称加密.单向加密. 对称加密 对称加密算法采用单密钥加密,在通信过程中,数据发送方将原始数据分割成固定大小的块,经过密钥和加

对称密码——DES加密算法

前言 本篇博文将介绍对称密码算法中的DES密码的算法原理与代码实现(Java) DES算法原理 DES加密算法是对称加密算法(加密和解密使用同一个密钥)中的一种,DES也是分组密码,以64位为分组对明文进行加密. DES算法会对明文进行16轮的迭代加密,具体的算法过程可以看下面这图(来自文末参考博文中的图,做了一些修改).看一遍有点绕就那笔跟着走一遍. 下面这张图是每次迭代的的一个提取,我们从中可以直接观察到的就是迭代的两个规律: Li = Ri-1 Ri = Li-1 ^ F(Ri-1, Ki

浅谈DES加密算法

一.DES加密算法介绍 1.要求密钥必须是8个字节,即64bit长度 2.因为密钥是byte[8] , 代表字符串也可以是非可见的字节,可以与Base64编码算法一起使用 3.加密.解密都需要通过字节数组作为数据和密钥进行处理 二.对称加密 DES加密算法属于对称加密. 即利用指定的密钥,按照密码的长度截取数据,分成数据块,和密钥进行复杂的移位.算数运算或者数据处理等操作,形成只有特定的密码才能够解开的数据. 加密与解密用的是同一个密钥 三.相关类 1.Cipher: Java/Android要

DES加密算法详解- -

DES加密算法详解- - 对加密解密一直挺喜欢的,可还是没有怎么好好学习过,希望这是一个好的开始. 在网上搜了一下关于DES的说明,发现有些杂乱,所以还是有必要整合一下. 写了一点代码,还没有完成,不过,还不能编译通过,^_^ 刚看了一下,发现还是说得够模糊的,有机会再整理一下. 昏倒,一直运行不对,今天才仔细查出来,原来问题是出在Des_Data_P(const_b32& input, _b32 output), 我的output用了传值调用,失败呀.应该是Des_Data_P(const _

DES加密算法的实现

本文内容: 1. 对称加密 2. 数据加密标准 3. 用c++程序实现DES加密和解密 4. 实验效果 一.对称加密 对称加密也称为常规加密.私钥或单钥加密. 一个对称加密由5部分组成: - 明文(plaintext):这是原始信息或数据,作为算法的输入. - 加密算法(encryption algorithm):加密算法对明文进行各种替换和转换. - 密钥(secret key):密钥也是算法的输入.算法进行的具体替换和转换取决于密钥. - 密文(ciphertext):这是产生的已被打乱的消

轻松学习RSA加密算法原理

以前也接触过RSA加密算法,感觉这个东西太神秘了,是数学家的事,和我无关.但是,看了很多关于RSA加密算法原理的资料之后,我发现其实原理并不是我们想象中那么复杂,弄懂之后发现原来就只是这样而已.. 学过算法的朋友都知道,计算机中的算法其实就是数学运算.所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识.我们就从数学知识开始讲解. 必备数学知识 RSA加密算法中,只用到素数.互质数.指数运算.模运算等几个简单的数学知识.所以,我们也需要了解这几个概念即可. 素数 素数又称质数,指在一