LPC1768基本输入输出GPIO使用

  LPC1788通用IO口的控制包含了一些基本的组件,比如设置推挽输出,开漏输出,上拉电阻等,我们今天来看看.

  首先使用GPIO要打开GPIO的系统时钟

   

  LPC_SC->PCONP |= (1<<15);//gpio 时钟

  然后需要选择我们选定引脚的功能,有些引脚有多个功能,通过寄存器可以从中选择一个

   

  之后是设置相关引脚的外部电阻状态pinmode寄存器

   

  然后设置开漏方式pinmode_od

  

  到这里,引脚的基本功能就OK了,此时要操作GPIO还需要设置几个东西

  1. 输入输出方向FIODIR

  1. 方向设置之后就可以输入输出了,注意gpio的输入输出是通过三个寄存器完成,输出设置寄存器功能是将io口电平设置为高

  输出为低电平用输出清除寄存器

  

  获取输出状态使用端口值寄存器

  

  另外,当我们想要禁用某些端口的时候可以使用屏蔽寄存器

  

  我们可以看到,寄存器的访问都是三十二位的不是很方便,幸好lpc1768是支持位段操作的,我们可以将寄存器的位段定义成这个样子

//位带操作,实现51类似的GPIO控制功能

//具体实现思想,参考<<CM3权威指南>>第五章(87页~92页).

//IO口操作宏定义

#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))

#define MEM_ADDR(addr)  *((volatile unsigned long  *)(addr))

#define BIT_ADDR(addr, bitnum)   MEM_ADDR(BITBAND(addr, bitnum))

//IO口地址映射

//输出寄存器

#define GPIO0_ODR_Addr    (LPC_GPIO0_BASE+0x18) //0x2009C018

#define GPIO1_ODR_Addr    (LPC_GPIO1_BASE+0x18) //0x2009C038

#define GPIO2_ODR_Addr    (LPC_GPIO2_BASE+0x18) //0x2009C058

#define GPIO3_ODR_Addr    (LPC_GPIO3_BASE+0x18) //0x2009C078

#define GPIO4_ODR_Addr    (LPC_GPIO4_BASE+0x18) //0x2009C098

//输入寄存器

#define GPIO0_IDR_Addr    (LPC_GPIO0_BASE+0x14) //0x2009C014

#define GPIO1_IDR_Addr    (LPC_GPIO1_BASE+0x14) //0x2009C034

#define GPIO2_IDR_Addr    (LPC_GPIO2_BASE+0x14) //0x2009C054

#define GPIO3_IDR_Addr    (LPC_GPIO3_BASE+0x14) //0x2009C074

#define GPIO4_IDR_Addr    (LPC_GPIO4_BASE+0x14) //0x2009C094

//方向寄存器

#define GPIO0_DIR_Addr    (LPC_GPIO0_BASE+0x00) //0x2009C000

#define GPIO1_DIR_Addr    (LPC_GPIO1_BASE+0x00) //0x2009C020

#define GPIO2_DIR_Addr    (LPC_GPIO2_BASE+0x00) //0x2009C040

#define GPIO3_DIR_Addr    (LPC_GPIO3_BASE+0x00) //0x2009C060

#define GPIO4_DIR_Addr    (LPC_GPIO4_BASE+0x00) //0x2009C080

//清零寄存器

#define GPIO0_CLS_Addr    (LPC_GPIO0_BASE+0x1C) //0x2009C01C

#define GPIO1_CLS_Addr    (LPC_GPIO1_BASE+0x1C) //0x2009C03C

#define GPIO2_CLS_Addr    (LPC_GPIO2_BASE+0x1C) //0x2009C05C

#define GPIO3_CLS_Addr    (LPC_GPIO3_BASE+0x1C) //0x2009C07C

#define GPIO4_CLS_Addr    (LPC_GPIO4_BASE+0x1C) //0x2009C09C

//IO口操作,只对单一的IO口!

//确保n的值小于32!

#define P0high(n)  BIT_ADDR(GPIO0_ODR_Addr,n)  //输出  0输出不变 1输出为1

#define P0low(n)   BIT_ADDR(GPIO0_CLS_Addr,n)  // 清除   0输出不变 1输出0

#define P0in(n)    BIT_ADDR(GPIO0_IDR_Addr,n)  //输入

#define P0dir(n)   BIT_ADDR(GPIO0_DIR_Addr,n)  //方向 0输入1输出

#define P1high(n)  BIT_ADDR(GPIO1_ODR_Addr,n)  //输出  0输出不变 1输出为1

#define P1low(n)   BIT_ADDR(GPIO1_CLS_Addr,n)  // 清除   0输出不变 1输出0

#define P1in(n)    BIT_ADDR(GPIO1_IDR_Addr,n)  //输入

#define P1dir(n)   BIT_ADDR(GPIO1_DIR_Addr,n)  //方向 0输入1输出

#define P2high(n)  BIT_ADDR(GPIO2_ODR_Addr,n)  //输出  0输出不变 1输出为1

#define P2low(n)   BIT_ADDR(GPIO2_CLS_Addr,n)  // 清除   0输出不变 1输出0

#define P2in(n)    BIT_ADDR(GPIO2_IDR_Addr,n)  //输入

#define P2dir(n)   BIT_ADDR(GPIO2_DIR_Addr,n)  //方向 0输入1输出

#define P3high(n)  BIT_ADDR(GPIO3_ODR_Addr,n)  //输出  0输出不变 1输出为1

#define P3low(n)   BIT_ADDR(GPIO3_CLS_Addr,n)  // 清除   0输出不变 1输出0

#define P3in(n)    BIT_ADDR(GPIO3_IDR_Addr,n)  //输入

#define P3dir(n)   BIT_ADDR(GPIO3_DIR_Addr,n)  //方向 0输入1输出

#define P4high(n)  BIT_ADDR(GPIO4_ODR_Addr,n)  //输出  0输出不变 1输出为1

#define P4low(n)   BIT_ADDR(GPIO4_CLS_Addr,n)  // 清除   0输出不变 1输出0

#define P4in(n)    BIT_ADDR(GPIO4_IDR_Addr,n)  //输入

#define P4dir(n)   BIT_ADDR(GPIO4_DIR_Addr,n)  //方向 0输

这样就可以很方便的控制IO口的输入输出方向和设置值以及获取值了(否则在某些io口模仿iic的应用中烦得要死啊).

给一个相关的代码

//led为p2.0

void LedInit(void)

{

LPC_SC->PCONP |= (1<<15);//打开GPIO时钟

LPC_PINCON->PINSEL4 &= ~(0X03L<<0);//gpio功能

LPC_PINCON->PINMODE4 &= ~(0X03L<<0);//上拉电阻

LPC_PINCON->PINMODE_OD2 &= ~(0X01<<0);//推挽模式

P2dir(0) = 1;//输出

P2high(0) = 1;//初始化高电平,灯灭

}

void LedSet(u8 set)

{

if(set)P2high(0) = 1;

else P2low(0) = 1;

}

时间: 2024-11-06 08:31:08

LPC1768基本输入输出GPIO使用的相关文章

STM32F4 输入输出(GPIO)模式理解

stm32的GPIO的配置模式有好几种,包括: 1. 模拟输入: 2. 浮空输入: 3. 上拉输入: 4. 下拉输入: 5. 开漏输出: 6. 推挽输出: 7. 复用开漏输出: 8. 复用推挽输出 如图是GPIO的结构原理图: 1.模拟输入 从上图我们可以看到,我觉得模拟输入最重要的一点就是,他不经过输入数据寄存器,所以我们无法通过读取输入数据寄存器来获取模拟输入的值,我觉得这一点也是很好理解的,因为输入数据寄存器中存放的不是0就是1,而模拟输入信号不符合这一要求,所以自然不能放进输入数据寄存器

我的第一个Raspberry PI装置

好吧,我先承认是这是从书上学习的第一个示例. 我入手的是Raspberry红版,版本2,看到这么小巧的卡片电脑可以做这么多事情,真是让人惊喜! 安装系统等都很顺利,启动.安装程序.远程桌面.SSH登录等都很顺利,就是安装XBMC不行,各种版本都不行,启动起来后操作不一会就挂掉了,不知道是什么原因,电源没有问题,2A的,之后再测试吧.以后我觉得买绿版就可以,没什么区别. 今天试了一下刚入手的各种配件,先晒个小图: 这大概是最简单的Rasp应用了  :-) 面包板上是简单的串联电路,电阻是10K的,

CC3200学习系列--芯片简介

德州仪器 (TI) 宣布推出其面向物联网 (IoT) 应用的新型 Simplelink Wi-Fi? cc3100和cc3200平台.在 TI 针对 IoT 应用的诸多新型.简易.低功耗 SimpleLink 无线连接解决方案中,该 SimpleLink Wi-Fi 系列是率先面市的. 芯片描述:用业界第一个具有内置 Wi-Fi 连通性的单片微控制器单元 (MCU) 开始你的设计. 针对物联网 (IoT) 应用的 SimpleLink CC3200 器件是一款集成了高性能 ARM Cortex-

嵌入式开发之hi3519---GPIO 驱动

在一个嵌入式系统中使用最多的莫过于 通用输入输出 GPIO口.看到论坛中经常有朋友问海思为什么没有提供GPIO驱动.其实不然. 在海思SDK  xxx/osdrv/tools/board_tools/reg-tools-1.0.0/source/tools/下 提供了himm的读写工具源码.你也可以根据himm的源码来写一个文件设备操作的驱动.毕竟轮子已经有了,我们就没必要再去造轮子了. 这个工具是用来 配置海思寄存器的.当然可以稍加改造或者在应用直接使用来控制通用寄存器. 根据海思提供资料 ,

基于意法半导体MCU STM32的底层配置

意法半导体MCU是全球领先的半导体供应商,自成立以来已满足了市场上多元化的需求,提供了各行业领域范围半导体产品及解决方案.为了保持其技术优势,意法半导体坚定地致力于创新,约有7400人从事研发和产品设计工作,并在2018年将其收入的15%用于研发.STM32MCU被广泛应用在各种丰富的不同行业当中.为此本篇文章将介绍有关STM32底层配置的相关技术. 本文通过,介绍STM32主要的底层配置,通过关键步骤的程序源代码的介绍,阐述实现数据传输的细节以及注意事项.该方法对其他项目或芯片有一定的实现价值

LPC1768外部中断与GPIO中断

LPC1768的外部中断严格来说只有四个,分别是EINT0,EINT1,EINT2,EINT3,技术手册上有如下说明 控制这四个外部中断靠以下寄存器 这三个寄存器的0 1 2 3位分别代表中断的0 1 2 3,EXTINT寄存器表示中断是否发生,在发生中断的时候该寄存器会置位,可以通过写1清零,EXTMODE寄存器表示触发模式,有电平触发和变化沿触发两种,EXTPOLAR与EXTMODE,在电平触发模式下,决定高电平还是低电平触发,在变化沿触发的情况下决定上升沿还是下降沿触发 这三个中断分别相关

GPIO输入输出各种模式(推挽、开漏、准双向端口)详解(转)

GPIO输入输出各种模式(推挽.开漏.准双向端口 概述 能将处理器的GPIO(General Purpose Input and Output)内部结构和各种模式彻底弄清楚的人并不多,最近在百度上搜索了大量关于这部分的资料,对于其中很多问题的说法并不统一.本文尽可能的将IO涉及到的所有问题罗列出来,对于有明确答案的问题解释清楚,对于还存在疑问的地方也将问题提出,供大家讨论. 概括地说,IO的功能模式大致可以分为输入.输出以及输入输出双向三大类.其中作为基本输入IO,相对比较简单,主要涉及的知识点

实验记录三 通用输入输出(GPIO)

之前把所有程序都跑了一次后,得到了导师下一步的安排.如下: 1.编写一个程序,实现在LCD上显示一个万年历,包括年月日 星期 还有室内的温度.2.编写一个程序,将原来的交通灯改为跑马灯. 期限是这学期. 好吧.一学期编两个程序.还真是从0做起.虽然是用C编程,但是用的库函数却是相应工程开发自带的API.于是,开始从第一个基础程序做起,以便熟悉相应的API函数操作. GPIO 通用输入输出函数 函数名真长 参数也是两三个以上,不习惯.忙乎了大概两三个小时才基本把常用的六七个函数弄明白,真是白痴透了

树莓派GPIO输入输出--控制LED

GPIO引脚有两种模式BOARD和BCM. 1.GPIO输出控制LED 效果图: 代码: (1)使用BOARD模式,GPIO.setmode(GPIO.BOARD).35号引脚在BCM下是GPIO19 (2)将引脚35设置为输出模式,GPIO.setup(35,GPIO.OUT) (3)对GPIO35引脚输出高电平,也可以为GPIO.HIGH 2.GPIO接口获取输入信号 效果图: 电路图 当开关断开时,GPIO23是高点平获取到的输入信号是Ture.当开关按下时GPIO23为接地,获取到的信号