聚类-分类-回归 每天积累 每天进步 不要浪费时间了

从 coursa 上面学的是说,监督学习是指我们来教计算机如何“学习”,非监督学习是指让计算机自己学习。监督学习又有两个大的分支,一个是 regression,另一个是 classification 既然是我们来教计算机如何学习那就必定有一个“标准答案”。regression 是说,这个标准答案是连续的。 比如说,对三个月销售量的估计。classification 是说,这个标准答案是离散的。比如说,对是否患有cancer的判断。非监督学习就没有标准答案了。比如说,给你一堆数据,让你来分析这堆数据的结构。

  1. 聚类(clustering)

    无监督学习的结果。聚类的结果将产生一组集合,集合中的对象与同集合中的对象彼此相似,与其他集合中的对象相异

    没有标准参考的学生给书本分的类别,表示自己认为这些书可能是同一类别的(具体什么类别不知道)。

  2. 分类(classification)

    有监督学习的两大应用之一,产生离散的结果。

    例如向模型输入人的各种数据的训练样本,产生“输入一个人的数据,判断是否患有癌症”的结果,结果必定是离散的,只有“是”或“否”。

  3. 回归(regression)

    有监督学习的两大应用之一,产生连续的结果。

    例如向模型输入人的各种数据的训练样本,产生“输入一个人的数据,判断此人20年后今后的经济能力”的结果,结果是连续的,往往得到一条回归曲线。当输入自变量不同时,输出的因变量非离散分布。

作者:好好爱自己
链接:https://www.zhihu.com/question/23194489/answer/35504284
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

简单地说:分类--是“监督学习”,事先知道有哪些类别可以分。聚类--是“无监督学习”,事先不知道将要分成哪些类。

 分类是指分析数据库中的一组对象,找出其共同属性。然后根据分类模型,把它们划分为不同的类别。分类数据首先根据训练数据建立分类模型,然后根据这些分类描述分类数据库中的测试数据或产生更恰当的描述。
   聚类是指数据库中的数据可以划分为一系列有意义的子集,即类。在同一类别中,个体之间的距离较小,而不同类别上的个体之间的距离偏大。聚类分析通常称为“无监督学习”。

_________________________________

简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习)。聚类分析目的在于将相似的事物归类,同一类中的个体有较大的相似性,不同类的个体差异性很大。

_____________________________________

简单地说,分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。简单地说,聚类是指事先没有“标签”而通过某种成团分析找出事物之间存在聚集性原因的过程。

区别是,分类是事先定义好类别 ,类别数不变 。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。聚类则没有事先预定的类别,类别数不确定。 聚类不需要人工标注和预先训练分类器,类别在聚类过程中自动生成 。分类适合类别或分类体系已经确定的场合,比如按照国图分类法分类图书;聚类则适合不存在分类体系、类别数不确定的场合,一般作为某些应用的前端,比如多文档文摘、搜索引擎结果后聚类(元搜索)等。   分类的目的是学会一个分类函数或分类模型(也常常称作分类器 ),该模型能把数据库中的数据项映射到给定类别中的某一个类中。 要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可表示为:(v1,v2,...,vn; c);其中vi表示字段值,c表示类别。分类器的构造方法有统计方法、机器学习方法、神经网络方法等等。     聚类(clustering)是指根据“物以类聚”原理(我们并不关心某一类是什么,只是把相似的东西聚到一起),将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组。其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示。聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题。常见的聚类算法包括:K-均值聚类算法、K-中心点聚类算法、CLARANSBIRCH、CLIQUE、DBSCAN等。

本回答由提问者推荐

评论(9)

326

时间: 2024-08-24 01:07:14

聚类-分类-回归 每天积累 每天进步 不要浪费时间了的相关文章

模式识别:分类回归决策树CART的研究与实现

摘 要:本实验的目的是学习和掌握分类回归树算法.CART提供一种通用的树生长框架,它可以实例化为各种各样不同的判定树.CART算法采用一种二分递归分割的技术,将当前的样本集分为两个子样本集,使得生成的决策树的每个非叶子节点都有两个分支.因此,CART算法生成的决策树是结构简洁的二叉树.在MATLAB平台上编写程序,较好地实现了非剪枝完全二叉树的创建.应用以及近似剪枝操作,同时把算法推广到多叉树. 一.技术论述 1.非度量方法 在之前研究的多种模式分类算法中,经常会使用到样本或向量之间距离度量(d

CART分类回归树算法

CART分类回归树算法 与上次文章中提到的ID3算法和C4.5算法类似,CART算法也是一种决策树分类算法.CART分类回归树算法的本质也是对数据进行分类的,最终数据的表现形式也是以树形的模式展现的,与ID3,C4.5算法不同的是,他的分类标准所采用的算法不同了.下面列出了其中的一些不同之处: 1.CART最后形成的树是一个二叉树,每个节点会分成2个节点,左孩子节点和右孩子节点,而在ID3和C4.5中是按照分类属性的值类型进行划分,于是这就要求CART算法在所选定的属性中又要划分出最佳的属性划分

机器学习技法-决策树和CART分类回归树构建算法

课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增强(AdaBoost) Bagging和AdaBoost算法再分类的时候,是让所有的弱分类器同时发挥作用.它们之间的区别每个弱分离器是否对后来的blending生成G有相同的权重. Decision Tree是一种有条件的融合算法,每次只能根据条件让某个分类器发挥作用. 二.基本决策树算法 1.用递

mahout探索之旅——CART分类回归算法

CART算法原理与理解 CART算法的全称是分类回归树算法,分类即划分离散变量:回归划分连续变量.他与C4.5很相似,但是一个二元分类,采用的是类似于熵的GINI指数作为分类决策,形成决策树之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法. GINI指数 GINI指数主要是度量数据划分或训练数据集D的不纯度为主,系数值的属性作为测试属性,GINI值越小,表明样本的纯净度越高(即该样本属于同一类的概率越高).选择该属性产生最小的GINI指标的子集作为它的分裂子集.比如下面示例中一

CART(分类回归树)

1.简单介绍 线性回归方法可以有效的拟合所有样本点(局部加权线性回归除外).当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法一个是困难一个是笨拙.此外,实际中很多问题为非线性的,例如常见到的分段函数,不可能用全局线性模型来进行拟合. 树回归将数据集切分成多份易建模的数据,然后利用线性回归进行建模和拟合.这里介绍较为经典的树回归CART(classification and regression trees,分类回归树)算法. 2.分类回归树基本流程 构建树: 1.找到[最佳待切分

对于分类回归树和lightgbm的理解

在分类回归树中之所以要先分类后回归的原因是, 对于一般的线性回归是基于全部的数据集.这种全局的数据建模对于一些复杂的数据来说,其建模的难度会很大.所以我们改进为局部加权线性回归,其只利用数据点周围的局部数据进行建模,这样就简化了建模的难度,提高了模型的准确性.树回归也是一种局部建模的方法,其通过构建决策点将数据切分,在切分后的局部数据集上做回归操作. 比如在前面博客中提到的风险预测问题,其实就是在特征层面对于不同类型的用户分到了不同的叶子节点上.例如我们用了时间作为特征,就将晚上开车多的用户分到

分类回归树

CART(Classification and Regression tree)分类回归树由L.Breiman,J.Friedman,R.Olshen和C.Stone于1984年提出.CART是一棵二叉树,采用二元切分法,每次把数据切成两份,分别进入左子树.右子树.而且每个非叶子节点都有两个孩子,所以CART的叶子节点比非叶子多.相比ID3和C4.5,CART应用要多一些,既可以用于分类也可以用于回归. 一 特征选择 CART分类时,使用基尼指数(Gini)来选择最好的数据分割的特征,gini描

用cart(分类回归树)作为弱分类器实现adaboost

在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理和adaboost原理和实现, 上两篇我们学习了cart(决策分类树),决策分类树也是决策树的一种,也是很强大的分类器,但是cart的深度太深,我们可以指定cart的深度使得cart变成强一点的弱分类器. 在决策树到集成学习我们提到,单棵复杂的决策树可以达到100%,而简单的集成学习只能有85%的正确率,下面我们尝试用强一点的弱分类器来看下集成学习的效果有没有提

利用K-means聚类分类,进行特征学习

这只是老师安排的一个实验,准备过程中遇到各种问题,现在贴出来供大家参考,是Andrew Ng参与的研究, 论文依据如下,第二篇是一篇相关的论文, Learning Feature Representations with K-means, Adam Coates and Andrew Y. Ng. In Neural Networks: Tricks of the Trade, Reloaded, Springer LNCS, 2012 An Analysis of Single-Layer N