协方差的意义和计算公式

协方差的意义和计算公式

学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。

很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。

为什么需要协方差?

上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义:

来度量各个维度偏离其均值的程度,标准差可以这么来定义:

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?如果为0,也是就是统计上说的“相互独立”。

从协方差的定义上我们也可以看出一些显而易见的性质,如:

协方差多了就是协方差矩阵

上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算 n! / ((n-2)!*2) 个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:

这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有三个维度,则协方差矩阵为

可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。

下面给出了一个例子:

x = [-1,1,2;

-2,3,1;

4,0,3];

计算过程:

x = [-1,1,2;-2,3,1;4,0,3];
k = size(x,2);
cov1 = [];
for i = 1:k
for j =1 :k
cov1(i,j) = sum((x(:,i) - sum(x(:,i))/k).*(x(:,j) -sum(x(:,j))/k))/(size(x,1) - 1);
end
end

http://www.cnblogs.com/ywl925/p/3210822.html

时间: 2024-10-27 04:59:54

协方差的意义和计算公式的相关文章

转载--协方差的意义和计算公式

协方差的意义和计算公式 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均.以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,

协方差的意义和计算公式(转)

学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的, 而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均.以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.

(转载)协方差的意义

数学学了好多年,从学会解各种方程组到计算二重三重积分,从代数到几何,从二维平面到三维空间,从线性代数到概率统计……学会了各种机械的解法,但很多基本概念的意义却不知道.比如说我会很容易的求得一个矩阵的特征值跟特征向量,但是他们到底有什么含义,我们为什么要求一个矩阵的特征值??一头雾水.. 这是在做一个模式识别课堂老师布置的一个作业题时遇到的,协方差矩阵.突然想到协方差,实在忘记了它的意义.看到前人整理过详细的解释,做搬运工没意思,这里引用之,以供自己以后巩固知识. 当 X, Y 的联合分布像上图那

协方差的意义

协方差的意义 转载于:http://bbs.mathchina.com/cgi-bin/topic.cgi?forum=5&topic=14444(感谢原作者)  在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况: 当 X, Y 的联合分布像上图那样时,我们能够看出,大致上有: X 越大  Y 也越大, X 越小  Y 也越小,这样的情况,我们称为"正相关". 当X, Y 的联合分布像上图那样时,我们能够看出,大致上有:X 越大Y 反而越小,X 越小 Y

概率统计----协方差

????机器视觉中,常用到协方差相关的知识,特别是基于统计框架下的机器学习算法,几乎无处不在的用到它,因此了解协方差是再基础不过的了.这里推荐一个很不错的基础教程:协方差的意义和计算公式 均值和方差 引入协方差之前,先简单回顾下概率统计中的两个重要基础概念:均值和方差.均值,顾名思义就是一堆样本的平均值,方差就是样本和均值的平均偏差.对于给定的n个样本,那么样本集的均值和方差可以分别这样来定义: 名称 公式 解释 均值 样本的平均值,即样本的中心点,例如{1 2,3,4}的均值是2.5 标准差

协方差、协方差矩阵定义与计算

转自:http://blog.csdn.net/xw20084898/article/details/42077141 协方差的意义和计算公式 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的, 而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均.以

用贝叶斯判别分析再次预测股票涨跌情况

可以转载,禁止修改.转载请注明作者以及原文链接 注:本文是从贝叶斯分类器的角度来讨论判别分析,有关贝叶斯分类器的概念可参考文末延伸阅读第1-2篇文章.至于Fisher判别分析,未来会连同PCA一同讨论. 判别分析也是一种分类器,与逻辑回归相比,它具有以下优势: 当类别的区分度高的时候,逻辑回归的参数估计不够稳定,它点在线性判别分析中是不存在的: 如果样本量n比较小,而且在每一类响应变量中预测变量X近似服从正态分布,那么线性判别分析比逻辑回归更稳定: 多于两类的分类问题时,线性判别分析更普遍. 贝

协方差矩阵(转载)

总结一下,协方差其实就是任意两个维度的数据偏差的乘累加的平均. 协方差的意义和计算公式 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的, 而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均.以这两个集合为例,[0,8,12,20]和[8,9,11,

协方差、相关系数---通俗解释

一.协方差的意义 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差.首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过. 均值: 标准差: 方差: 很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的, 而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均.以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的