第三百二十四节,web爬虫,scrapy模块介绍与使用

第三百二十四节,web爬虫,scrapy模块介绍与使用

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

Scrapy主要包括了以下组件:

  • 引擎(Scrapy)
    用来处理整个系统的数据流处理, 触发事务(框架核心)
  • 调度器(Scheduler)
    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
  • 下载器(Downloader)
    用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
  • 爬虫(Spiders)
    爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
  • 项目管道(Pipeline)
    负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件(Downloader Middlewares)
    位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 爬虫中间件(Spider Middlewares)
    介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
  • 调度中间件(Scheduler Middewares)
    介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

  1. 引擎从调度器中取出一个链接(URL)用于接下来的抓取
  2. 引擎把URL封装成一个请求(Request)传给下载器
  3. 下载器把资源下载下来,并封装成应答包(Response)
  4. 爬虫解析Response
  5. 解析出实体(Item),则交给实体管道进行进一步的处理
  6. 解析出的是链接(URL),则把URL交给调度器等待抓取

创建Scrapy框架项目

Scrapy框架项目是有python安装目录里的Scripts文件夹里scrapy.exe文件创建的,所以python安装目录下的Scripts文件夹要配置到系统环境变量里,才能运行命令生成项目

创建项目

首先运行cmd终端,然后cd 进入要创建项目的目录,如:cd H:\py\14

进入要创建项目的目录后执行命令 scrapy startproject 项目名称

scrapy startproject pach1

项目创建成功

时间: 2024-10-12 15:12:15

第三百二十四节,web爬虫,scrapy模块介绍与使用的相关文章

第三百二十三节,web爬虫,scrapy模块以及相关依赖模块安装

第三百二十三节,web爬虫,scrapy模块以及相关依赖模块安装 当前环境python3.5 ,windows10系统 Linux系统安装 在线安装,会自动安装scrapy模块以及相关依赖模块 pip install Scrapy 手动源码安装,比较麻烦要自己手动安装scrapy模块以及依赖模块 安装以下模块 1.lxml-3.8.0.tar.gz (XML处理库) 2.Twisted-17.5.0.tar.bz2 (用Python编写的异步网络框架) 3.Scrapy-1.4.0.tar.gz

第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理

第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲-elasticsearch(搜索引擎)的mapping映射管理 1.映射(mapping)介绍 映射:创建索引的时候,可以预先定义字段的类型以及相关属性elasticsearch会根据json源数据的基础类型猜测你想要的字段映射,将输入的数据转换成可搜索的索引项,mapping就是我们自己定义的字段数据类型,同时告诉elasticsearch如何索引数据以及是否可以被搜索 作用:会让索引建立的更加细致和完善 类型:静态映射和动态

第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—数据收集(Stats Collection)

第三百五十四节,Python分布式爬虫打造搜索引擎Scrapy精讲-数据收集(Stats Collection) Scrapy提供了方便的收集数据的机制.数据以key/value方式存储,值大多是计数值. 该机制叫做数据收集器(Stats Collector),可以通过 Crawler API 的属性 stats 来使用无论数据收集(stats collection)开启或者关闭,数据收集器永远都是可用的. 因此您可以import进自己的模块并使用其API(增加值或者设置新的状态键(stat k

第二百二十四节,jQuery EasyUI,ComboGrid(数据表格下拉框)组件

jQuery EasyUI,ComboGrid(数据表格下拉框)组件 学习要点: 1.加载方式 2.属性列表 3.方法列表 本节课重点了解 EasyUI 中 ComboGrid(数据表格下拉框)组件的使用方法,这个组件 依赖于 Combo(自定义下拉框)和 DataGrid(数据表格)组件. 一.加载方式 class 加载方式 <select id="box" class="easyui-combogrid" name="dept" sty

第一百二十六节,JavaScript,XPath操作xml节点

第一百二十六节,JavaScript,XPath操作xml节点 学习要点: 1.IE中的XPath 2.W3C中的XPath 3.XPath跨浏览器兼容 XPath是一种节点查找手段,对比之前使用标准DOM去查找XML中的节点方式,大大降低了查找难度,方便开发者使用.但是,DOM3级以前的标准并没有就XPath做出规范:直到DOM3在首次推荐到标准规范行列.大部分浏览器实现了这个标准,IE则以自己的方式实现了XPath. 一.IE中的XPath 在IE8及之前的浏览器,XPath是采用内置基于A

第三百七十五节,Django+Xadmin打造上线标准的在线教育平台—创建课程机构app,在models.py文件生成3张表,城市表、课程机构表、讲师表

第三百七十五节,Django+Xadmin打造上线标准的在线教育平台-创建课程机构app,在models.py文件生成3张表,城市表.课程机构表.讲师表 创建名称为app_organization的课程机构APP,写数据库操作文件models.py models.py文件 #!/usr/bin/env python # -*- coding:utf-8 -*- from __future__ import unicode_literals from datetime import datetim

第三百七十六节,Django+Xadmin打造上线标准的在线教育平台—创建用户操作app,在models.py文件生成5张表,用户咨询表、课程评论表、用户收藏表、用户消息表、用户学习表

第三百七十六节,Django+Xadmin打造上线标准的在线教育平台-创建用户操作app,在models.py文件生成5张表,用户咨询表.课程评论表.用户收藏表.用户消息表.用户学习表 创建名称为app_operation的用户操作APP,写数据库操作文件models.py models.py文件 #!/usr/bin/env python # -*- coding:utf-8 -*- from __future__ import unicode_literals from datetime i

第三百七十九节,Django+Xadmin打造上线标准的在线教育平台—xadmin的安装

第三百七十九节,Django+Xadmin打造上线标准的在线教育平台-xadmin的安装 xadmin介绍 xadmin是基于Django的admin开发的更完善的后台管理系统

第三百六十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的查询

第三百六十五节,Python分布式爬虫打造搜索引擎Scrapy精讲-elasticsearch(搜索引擎)的查询 elasticsearch(搜索引擎)的查询 elasticsearch是功能非常强大的搜索引擎,使用它的目的就是为了快速的查询到需要的数据 查询分类: 基本查询:使用elasticsearch内置的查询条件进行查询 组合查询:把多个查询条件组合在一起进行复合查询 过滤:查询同时,通过filter条件在不影响打分的情况下筛选数据