[BZOJ 2705][SDOI 2012]Longge的问题(欧拉函数)

题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705

网上的题解都不是很靠谱,我就来YY下自己的思路吧。。。

首先,对于1<=i<=N,gcd(i,N)的可能性解就是N的约数。那么这个题就是求Σgcd(i,N)=k,k是n的因数,等价于求Σgcd(i/k,N/k)=gcd(i‘,N/k)=1,即找出所有与N/k互质且小于等于N/k的i‘的个数,这就转化到求欧拉函数的问题上来了。

所以这个题的做法是,sqrt(N)复杂度内枚举N的所有约数k,然后对phi(N/k)求和。

#include <iostream>
#include <stdio.h>
#include <cmath>

using namespace std;

typedef long long int LL;

LL sqrtn;

LL h(LL x)
{
    LL ans=x;
    for(LL i=2;i<=sqrtn;i++)
    {
        if(x%i==0)
        {
            ans=ans/i*(i-1);
            while(x%i==0) x/=i;
        }
    }
    if(x>1) ans=ans/x*(x-1);
    return ans;
}

int main()
{
    LL n,ans=0;
    scanf("%lld",&n);
    sqrtn=sqrt(n);
    for(LL i=1;i<=sqrtn;i++) //枚举n的约数i
    {
        if(n%i==0)
        {
            ans+=i*h(n/i);
            if(i*i<n) ans+=(n/i)*h(i);
        }
    }
    printf("%lld\n",ans);
    return 0;
}



时间: 2024-10-05 04:59:04

[BZOJ 2705][SDOI 2012]Longge的问题(欧拉函数)的相关文章

POJ2480 Longge&#39;s problem 欧拉函数的应用 &amp;&amp; 积性函数

题意很简单,求sum(gcd(i,n))   1<=i<=n; 这题看到后第一反应并没有里用积性函数的性质,不过也可以做,欣慰的是我反应还是比较快的 设f(n)=gcd(1,n)+gcd(2,n)+....+gcd(n-1,n) + gcd(n,n), 用g(n,i)表示满足 gcd(x,n)=i的 x的个数 (x小于n),则 f(n)=sum{i*g(n,i)}; 同时又利用 扩展欧几里德的性质  gcd(x,n)=i  的充要条件是 gcd(x/i,n/i)==1,所以 满足 x/i的解有

poj 2480 Longge&#39;s problem [ 欧拉函数 ]

传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2416 Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms.

Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp

BZOJ-2705: [SDOI2012]Longge的问题 (欧拉函数)

2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 3313  Solved: 2072[Submit][Status][Discuss] Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Inp

[SDOI 2012]Longge的问题

Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一个整数,为N. Output 一个整数,为所求的答案. Sample Input 6 Sample Output 15 HINT [数据范围] 对于60%的数据,0<N<=2^16. 对于100%的数据,0<N<=2^32. 题解 求 $$\sum_{i = 1}^N gcd(i, N

【POJ 2480】Longge&#39;s problem(欧拉函数)

题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 分析 用欧拉函数$φ(x)$求1到x-1有几个和x互质的数. gcd(i,n)必定是n的一个约数.若p是n的约数,那么gcd(i,n)==p的有$φ(n/p)$个数,因为要使gcd(i,n)==p,i/p和n/p必须是互质的.那么就是求i/p和n/p互质的i在[1,n]里有几个,就等价于,1/p,2/p,...,n/p里面有几个和n/p互质,即φ(n/p). 求和的话,约数为p

bzoj 2186 [Sdoi2008]沙拉公主的困惑 欧拉函数

bzoj 2186 [Sdoi2008]沙拉公主的困惑 题意: 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. 限制: 数据组数T:1 <= T <= 10000 R <= 1e9+10 1 <= N,M <=10000000

poj 2480 Longge&amp;#39;s problem 积性函数性质+欧拉函数

题意: 求f(n)=∑gcd(i, N) 1<=i <=N. 分析: f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d | n}phi(n / d) * d ,后者是积性函数),能够这么解释:当d是n的因子时,设1至n内有a1,a2,..ak满足gcd(n,ai)==d,那么d这个因子贡献是d*k,接下来证明k=phi(n/d):设gcd(x,n)==d,那么gcd(x/d,n/d)==1,所以满足条件的x/d数目为phi(

POJ2480:Longge&#39;s problem(欧拉函数的应用)

题目链接:传送门 题目需求: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. 这题就是上一篇博客的变形. 题目解析:首先先求出与N互质的个数,即N的欧拉函数值,之后分解出N的因子来,求解方法如下. 证明: 要求有多少个 i 满足gcd(i, N) = d 如果gcd(i, N) = d,则gcd(i/d, N/d) = 1 由于i <= N,所以 i/d <= N/d,