POJ - 3903 Stock Exchange(LIS最长上升子序列问题)

E - LIS

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John is one of them. He is very concerned about the evolution of the stock exchange. He follows stock prices every day looking for rising trends. Given a sequence of numbers p1, p2,...,pn representing stock prices, a rising trend is a subsequence pi1 < pi2 < ... < pik, with i1 < i2 < ... < ik. John’s problem is to find very quickly the longest rising trend.

Input

Each data set in the file stands for a particular set of stock prices. A data set starts with the length L (L ≤ 100000) of the sequence of numbers, followed by the numbers (a number fits a long integer). 
White spaces can occur freely in the input. The input data are correct and terminate with an end of file.

Output

The program prints the length of the longest rising trend. 
For each set of data the program prints the result to the standard output from the beginning of a line.

Sample Input

6
5 2 1 4 5 3
3
1 1 1
4
4 3 2 1

Sample Output

3
1
1

Hint

There are three data sets. In the first case, the length L of the sequence is 6. The sequence is 5, 2, 1, 4, 5, 3. The result for the data set is the length of the longest rising trend: 3.

题解:LIS最长上升子序列问题  给出一个序列,从左到右的顺序选出尽量多的整数,组成一个上升子序列。

#include<cstdio>
int a[100001], f[100001];
int main()
{
    int n, k, l, r, mid;
    while (scanf("%d",&n)==1)
    {
        for (int i = 0; i < n; i++)
            scanf("%d",&a[i]);
        k = 0;
        f[0] = -1;             //赋初值,小于0即可
        for (int i = 0; i < n; i++)
        {
            if (a[i] > f[k])
            {
                k++;
                f[k] = a[i];         //每找到一个就保存到f【】数组里
            }
            else
            {
                l = 1, r = k;
                while (l<=r)          //判断此时的a[i]和f数组中各个值大小关系,直到找到最优值
                {
                    mid = (l + r) / 2;
                    if (a[i] > f[mid])
                        l = mid + 1;
                    else
                        r = mid - 1;
                }
                f[l] = a[i];
            }
        }
        printf("%d\n",k);
    }

}
时间: 2025-01-04 07:13:01

POJ - 3903 Stock Exchange(LIS最长上升子序列问题)的相关文章

POJ 3903 Stock Exchange (LIS:最长上升子序列)

POJ 3903Stock Exchange (LIS:最长上升子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=100000) 的数字序列, 要你求该序列中的最长(严格)上升子序列的长度. 分析: 由于n的规模达到10W, 所以只能用O(nlogn)的算法求. 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序列末尾值为x.(如果到目前为止, 根本不存在长i的上升序列, 那么x==INF无穷大) 假设当前遍历到了第j个

poj 3903 Stock Exchange(最长上升子序列,模版题)

题目 #include<stdio.h> //最长上升子序列 nlogn //入口参数:数组名+数组长度,类型不限,结构体类型可以通过重载运算符实现 //数组下标从1号开始. int bsearch(int a[],int len,int num) { int left=1,right=len; while(left<=right) { int mid=(left+right)/2; if(num<=a[mid]) //若最长不下降子序列,改<= 为 < right=m

{POJ}{3903}{Stock Exchange}{nlogn 最长上升子序列}

题意:求最长上升子序列,n=100000 思路:O(N^2)铁定超时啊....利用贪心的思想去找答案.利用栈,每次输入数据检查栈,二分查找替换掉最小比他大的数据,这样得到的栈就是更优的.这个题目确实不错,思路很好 #include <iostream> #include <string> #include <cstring> #include <cstdio> #include <algorithm> #include <memory>

POJ 3903 Stock Exchange 【最长上升子序列】模板题

题目链接:http://poj.org/problem?id=3903 转载于:https://www.cnblogs.com/GodA/p/5180560.html 题目大意: 裸的DP最长上升子序列,给你一段序列,求其最长上升子序列的长度,n^2的dp朴素算法过不了,这里用的是nlogn的算法,用了二分查找. 具体算法思路解析: 学习动态规划问题(DP问题)中,其中有一个知识点叫最长上升子序列(longest  increasing subsequence),也可以叫最长非降序子序列,简称L

POJ 3903 Stock Exchange LIS

题目链接:http://poj.org/problem?id=3903 题目大意:LIS的nlog(n)写法. 解题思路:dp[i]:=长度为i的最长递增子序列的末尾元素最小值.那么由于dp[i]形成了一个有序的序列,所以可以采用二分的办法. dp[j] = a[i]  dp[j] <= a[j] < dp[j + 1] 代码: 1 const int inf = 0x3f3f3f3f; 2 const int maxn = 1e5 + 5; 3 int a[maxn], n; 4 int d

POJ3903 Stock Exchange LIS最长上升子序列

POJ3903 Stock Exchange 1 #include <iostream> 2 #include <cstdio> 3 #include <vector> 4 #include <algorithm> 5 using namespace std; 6 const int maxn = 1e5+5; 7 int a[maxn]; 8 int main() { 9 int n; 10 while (~scanf("%d",&am

LIS(nlogn) POJ 3903 Stock Exchange

题目传送门 1 /* 2 最长递增子序列O(nlogn)算法: 3 设当前最长递增子序列为len,考虑元素a[i]; 4 若d[len]<a[i],则len++,并将d[len]=a[i]; 5 否则,在d[1~len]中二分查找,找到第一个比它小的元素d[j],并d[j]=a[i]. 6 */ 7 #include <cstdio> 8 #include <cstring> 9 #include <iostream> 10 #include <algori

POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)

POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) 的数字序列, 要你求该序列中的最长(严格)下降子序列的长度. 分析:        读取全部输入, 将原始数组逆向, 然后求最长严格上升子序列就可以. 因为n的规模达到20W, 所以仅仅能用O(nlogn)的算法求.        令g[i]==x表示当前遍历到的长度为i的全部最长上升子序列中的最小序列末

POJ 3903 Stock Exchange(LIS)

Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4578   Accepted: 1618 Description The world financial crisis is quite a subject. Some people are more relaxed while others are quite anxious. John is one of them. He is very