注:最近开始学习《人工智能》选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索。
从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准)。
1. 什么是逻辑回归?
许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多。从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类。
在线性回归模型中,输出一般是连续的,例如$$y = f(x) = ax + b$$,对于每一个输入的x,都有一个对应的y输出。模型的定义域和值域都可以是[-∞, +∞]。但是对于逻辑回归,输入可以是连续的[-∞, +∞],但输出一般是离散的,即只有有限多个输出值。例如,其值域可以只有两个值[0, 1],这两个值可以表示对样本的一种分类,存在/不存在、患病/健康等(突然又想起了莎士比亚的一句名言to be or not to be...),这就是最常见的二分类逻辑回归。因此,从整体上来说,通过逻辑回归模型,我们将在整个实数范围上的x映射到了有限个点上,这样就实现了对x的分类。因为每次拿过来一个x,经过逻辑回归分析,就可以将它归为某一类y中。
逻辑回归与线性回归的关系
逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本上相同,都具有 ax+b,其中a和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将ax+b作为因变量,即y = ax+b,而logistic回归则通过函数S将ax+b对应一个隐状态p,p = S(ax+b),然后根据p与1-p的大小决定因变量的值。这里的函数S就是Sigmoid函数
$$S(t) = \frac{1}{1 + e^{-t}}$$
将t换成ax+b,可以得到逻辑回归模型的参数形式:$$p(x; a,b) = \frac{1}{1 + e^{-(ax+b)}} ……(1)$$
图1:sigmoid函数的图像
通过函数S的作用,我们可以将输出的值限制在区间[0, 1]上,p(x)则可以用来表示概率p(y=1|x),即当一个x发生时,y被分到1那一组的概率。可是,等等,我们上面说y只有两种取值,但是这里却出现了一个区间[0, 1]是什么鬼??其实在真实情况下,我们最终得到的y的值是在[0, 1]这个区间上的一个数,然后我们可以选择一个阈值,通常是0.5,当y>0.5时,就将这个x归到1这一类,如果y<0.5就将x归到0这一类。但是阈值是可以调整的,比如说一个比较保守的人,可能将阈值设为0.9,也就是说有超过90%的把握,才相信这个x属于1这一类。
2. 数据准备
下面的数据来自《机器学习实战》中的示例:
-0.017612 14.053064 0
-1.395634 4.662541 1
-0.752157 6.538620 0
-1.322371 7.152853 0
0.423363 11.054677 0
0.406704 7.067335 1
0.667394 12.741452 0
-2.460150 6.866805 1
0.569411 9.548755 0
-0.026632 10.427743 0
3列10行,其中前两列为x1和x2的值,第3列表示y的值;10行表示取了10个样本点。
见到数据就可以比较直观的理解,我们可以如何利用这些数据(训练样本)来训练逻辑回归分类器,从而用训练好的模型来预测新的样本(检测样本)。
从式子(1)我们可以看到逻辑回归模型中有两个待定参数a(x的系数)和b(常数项),但是我们现在给出来的数据是二维的,因此就增加了一个参数:a0x0 + a1x1 + a2x2(其中x0 = 1,a0就是前面的b),这样统一起来后,就可以使用矩阵表示了(矩阵仅仅只是一种数学中的符号系统,比起前面展开的线性表示方式,用矩阵表示起来更加方便):
$$ \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} \begin{bmatrix} x_0 & x_1 & x_2 \end{bmatrix} = a^{ \mathrm{ T } }X$$
将上面的式子带入到(1)式,我们就可以得到逻辑回归的另一种(高大上的)表示形式了:
$$p(x; a) = \frac{1}{1 + e^{-a^{ \mathrm{ T } }X}} ……(2)$$
此时,可以很清楚的看到,我们后面的一些行动都是为了确定一个合适的a(注意,这里的a不是一个数值,而是一个向量),使得对于一个新来的X(这里的X也是一个向量),我们可以尽可能准确的给出一个y值,0或者1.
注:数据是二维的,也就是说这组观察样本中有两个自变量,或者两个特征(feature)。
3. 训练分类器
就像上面说的,训练分类器的过程,就是根据已经知道的数据(训练样本)确定一个比较合适的a(参数向量,回归系数)的过程。因为逻辑回归模型属于有监督的学习方法,因此上面示例数据中的第3列其实就是训练样本提供的"标准答案"。也就是说,这些数据是已经分好类的(两类,0或者1)。在训练阶段,我们要做的就是利用训练样本和(2)式中的模型,估计一个比较合适的参数a,使得仅通过前面两列数据(观察值/测量值)就可以估计一个值y‘,这个值应该尽可能接近"标准答案"y。
下面是估计回归系数a的值的过程,还是借鉴了《机器学习实战》中的代码,做了少量修改:
1 ‘‘‘ 2 Created on Oct 27, 2010 3 Logistic Regression Working Module 4 @author: Peter 5 ‘‘‘ 6 from numpy import * 7 import os 8 9 path = ‘D:\MechineLearning\MLiA_SourceCode\machinelearninginaction\Ch05‘ 10 training_sample = ‘trainingSample.txt‘ 11 testing_sample = ‘testingSample.txt‘ 12 13 # 从文件中读入训练样本的数据,同上面给出的示例数据 14 # 第20行中的1.0表示x0 = 1 15 def loadDataSet(p, file_n): 16 dataMat = []; labelMat = [] 17 fr = open(os.path.join(p, file_n)) 18 for line in fr.readlines(): 19 lineArr = line.strip().split() 20 dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) 21 labelMat.append(int(lineArr[2])) 22 return dataMat,labelMat 23 24 def sigmoid(inX): 25 return 1.0/(1+exp(-inX)) 26 27 # 梯度上升法求回归系数a,由于样本量少,我将迭代次数改成了1000次 28 def gradAscent(dataMatIn, classLabels): 29 dataMatrix = mat(dataMatIn) #convert to NumPy matrix 30 labelMat = mat(classLabels).transpose() #convert to NumPy matrix 31 m,n = shape(dataMatrix) 32 alpha = 0.001 33 maxCycles = 1000 34 weights = ones((n,1)) 35 for k in range(maxCycles): # heavy on matrix operations 36 h = sigmoid(dataMatrix*weights) # matrix multiplication 37 error = (labelMat - h) # vector subtraction 38 temp = dataMatrix.transpose()* error # matrix multiplication 39 weights = weights + alpha * temp # 这里其实是与梯度上升是等价的 40 return weights 41 42 # 下面是我自己写的测试函数 43 def test_logistic_regression(): 44 dataArr, labelMat = loadDataSet(path, training_sample) # 读入训练样本中的原始数据 45 A = gradAscent(dataArr, labelMat) # 回归系数a的值 46 h = sigmoid(mat(dataArr)*A) #预测结果y‘的值 47 print(dataArr, labelMat) 48 print(A) 49 print(h) 50 # plotBestFit(A.getA()) 51 52 test_logistic_regression()
上面代码的输出如下:
([[1.0, -0.017612, 14.053064], [1.0, -1.395634, 4.662541], [1.0, -0.752157, 6.53862], [1.0, -1.322371, 7.152853], [1.0, 0.423363, 11.054677], [1.0, 0.406704, 7.067335], [1.0, 0.667394, 12.741452], [1.0, -2.46015, 6.866805], [1.0, 0.569411, 9.548755], [1.0, -0.026632, 10.427743]], [0, 1, 0, 0, 0, 1, 0, 1, 0, 0]) #一个元组,包含两个数组:第一个数组是所有的训练样本中的观察值,也就是X,包括x0, x1, x2;第二个数组每组观察值对应的"标准答案"。
[[ 1.39174871]
[-0.5227482 ]
[-0.33100373]] #这个列表就是本次预测出来的回归系数a,包括a0, a1, a2
[[ 0.03730313]
[ 0.64060602]
[ 0.40627881]
[ 0.4293251 ]
[ 0.07665396]
[ 0.23863652]
[ 0.0401329 ]
[ 0.59985228]
[ 0.11238742]
[ 0.11446212]] # 这个数组是根据回归系数a和(2)式中的模型预测的值y‘,可以看出来与标准答案还是相差甚远。标红色的地方本应该是1,其它地方应该是0.
虽然预测的结果y‘不是非常接近y,但是也可以看出,如果我们取0.5作为阈值的话,可以将数据分为两类,其中一类包括原来y=1的两个样本,另一类包括原来y=0的所有样本和一个y=1的样本(分错了)。鉴于我们选择取的样本比较少(只有10个),这样的效果其实还算非常不错的!
4. 结果展示
上面已经求出了一组回归系数,它确定了不同类别数据之间的分割线。可以利用X内部(x1与x2之间的关系)的关系画出该分割线,从而更直观的感受到分类的效果。
添加下面一段代码:
1 # 分类效果展示,参数weights就是回归系数 2 def plotBestFit(weights): 3 import matplotlib.pyplot as plt 4 dataMat,labelMat=loadDataSet() 5 dataArr = array(dataMat) 6 n = shape(dataArr)[0] 7 xcord1 = []; ycord1 = [] 8 xcord2 = []; ycord2 = [] 9 for i in range(n): 10 if int(labelMat[i])== 1: 11 xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) 12 else: 13 xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) 14 fig = plt.figure() 15 ax = fig.add_subplot(111) 16 ax.scatter(xcord1, ycord1, s=30, c=‘red‘, marker=‘s‘) 17 ax.scatter(xcord2, ycord2, s=30, c=‘green‘) 18 x = arange(-3.0, 3.0, 0.1) 19 y = (-weights[0]-weights[1]*x)/weights[2] 20 ax.plot(x, y) 21 plt.xlabel(‘X1‘); plt.ylabel(‘X2‘); 22 plt.show()
将上面的test_logistic_regression()函数中的最后一句注释去掉,就可以看到分类的效果了。
这里说明一下上面代码中的第19行,这里设置了sigmoid函数的取值为1/2,也就是说去阈值为1/2来划分最后预测的结果。这样可以得到$$e^{-a^{ \mathrm{ T } }X} = 1$$,即-aTX=0,可以推出x2 = (-a0x0 - a1x1)/a2。同第19行,也就是说这里的y实际上是x2,而x是x1,表示的是x1与x2之间的关系。
分类效果图如下:
两个红色的点是原来y=1的样本,有一个分错了。这里相当于将所有的数据用二维坐标(x1, x2)表示了出来,更加回归参数画出的线将这些点一分为二。如果有新的样本,不知道在哪一类,只用将该点画在图上,看它在这条直线的哪一边就可以分类了。
下面是使用90个训练样本得到的结果:
可以看出一个非常明显的规律是,y=1的这一类样本具有更小的x2值,当x2相近时则具有更大的x1值。
此时计算出来的回归系数a为:
[[ 5.262118 ]
[ 0.60847797]
[-0.75168429]]
5. 预测新样本
添加一个预测函数,如下:
直接将上面计算出来的回归系数拿来使用,测试数据其实是《机器学习实战》这本书中的训练数据,我拆成了两份,前面90行用来做训练数据,后面10行用来当测试数据。
1 def predict_test_sample(): 2 A = [5.262118, 0.60847797, -0.75168429] # 上面计算出来的回归系数a 3 dataArr, labelMat = loadDataSet(path, testing_sample) 4 h_test = sigmoid(mat(dataArr) * mat(A).transpose()) # 将读入的数据和A转化成numpy中的矩阵 5 print(h_test) # 预测的结果
调用上面的函数,可以得到以下结果:
括号里按照0.5为阈值进行分类:大于0.5的当做1,小于0.5的当做0
[[ 0.99714035] (1)
[ 0.04035907] (0)
[ 0.12535895] (0)
[ 0.99048731] (1)
[ 0.98075409] (1)
[ 0.97708653] (1)
[ 0.09004989] (0)
[ 0.97884487] (1)
[ 0.28594188] (0)
[ 0.00359693]] (0)
下面是原来的训练样本后十行的数据:
0.089392 -0.715300 1
1.825662 12.693808 0
0.197445 9.744638 0
0.126117 0.922311 1
-0.679797 1.220530 1
0.677983 2.556666 1
0.761349 10.693862 0
-2.168791 0.143632 1
1.388610 9.341997 0
0.317029 14.739025 0
如果按照0.5为分界线的话,我们利用前90个样本训练出来的分类器将后面10个样本的类型全部预测对了。
附件:
完整代码:https://github.com/OnlyBelter/Learning-AI/blob/master/Logistic_Regression.py
训练数据:https://github.com/OnlyBelter/Learning-AI/blob/master/Logistic_Regression-trainingSample.txt
测试数据:https://github.com/OnlyBelter/Learning-AI/blob/master/Logistic_Regression-testingSample.txt
参考:
http://baike.baidu.com/item/logistic%E5%9B%9E%E5%BD%92
https://en.wikipedia.org/wiki/Sigmoid_function
《机器学习实战》,哈林顿著,李锐等译,人民邮电出版社,2013年6月第一版