machine learning in coding(python):使用交叉验证【选择模型超参数】

# Hyperparameter selection loop
score_hist = []
Cvals = [0.001, 0.003, 0.006, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1]
for C in Cvals:
    model.C = C
    score = cv_loop(Xt, y, model, N)
    score_hist.append((score,C))
    print "C: %f Mean AUC: %f" %(C, score)
bestC = sorted(score_hist)[-1][1]
print "Best C value: %f" % (bestC)

from kaggle

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-26 08:27:02

machine learning in coding(python):使用交叉验证【选择模型超参数】的相关文章

机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho

机器学习系统设计(Building Machine Learning Systems with Python)- Willi Richert Luis Pedro Coelho 总述 本书是 2014 的,看完以后才发现有第二版的更新,2016.建议阅读最新版,有能力的建议阅读英文版,中文翻译有些地方比较别扭(但英文版的书确实是有些贵). 我读书的目的:泛读主要是想窥视他人思考的方式. 作者写书的目标:面向初学者,但有时间看看也不错.作者说"我希望它能激发你的好奇心,并足以让你保持渴望,不断探索

『cs231n』作业1问题1选讲_通过代码理解K近邻算法&交叉验证选择超参数参数

通过K近邻算法探究numpy向量运算提速 茴香豆的"茴"字有... ... 使用三种计算图片距离的方式实现K近邻算法: 1.最为基础的双循环 2.利用numpy的broadca机制实现单循环 3.利用broadcast和矩阵的数学性质实现无循环 图片被拉伸为一维数组 X_train:(train_num, 一维数组) X:(test_num, 一维数组) 方法验证 import numpy as np a = np.array([[1,1,1],[2,2,2],[3,3,3]]) b

Building Machine Learning Systems with Python 2

1>监督学习(分类):先让机器学习一下每种花朵的样本数据,然后让他根据这些信息,对未标志出花朵种类的图像进行分类. 2>特征:我们把数据中所有测量的结果都叫特征. 2>交叉验证:极端的叫去一法(leave-one-out)从训练集中拿出一个样本,并在缺少这个样本的数据上训练一个模型,然后看模型是否能够对这个样本正确分类 3>分类模型的组成: 模型结构:采用一个阀值在一个特征上进行划分. 搜素过程:尽可能多的尝试所有特征和阀值的组合. 损失函数:用他来确定哪些可能性不会太差. 4&g

用交叉验证改善模型的预测表现

预测模型为何无法保持稳定? 让我们通过以下几幅图来理解这个问题: 此处我们试图找到尺寸(size)和价格(price)的关系.三个模型各自做了如下工作: 第一个模型使用了线性等式.对于训练用的数据点,此模型有很大误差.这样的模型在初期排行榜和最终排行榜都会表现不好.这是"拟合不足"("Under fitting")的一个例子.此模型不足以发掘数据背后的趋势. 第二个模型发现了价格和尺寸的正确关系,此模型误差低/概括程度高. 第三个模型对于训练数据几乎是零误差.这是因

Spark2.0机器学习系列之2:基于Pipeline、交叉验证、ParamMap的模型选择和超参数调优

Spark中的CrossValidation Spark中采用是k折交叉验证 (k-fold cross validation).举个例子,例如10折交叉验证(10-fold cross validation),将数据集分成10份,轮流将其中9份做训练1份做验证,10次的结果的均值作为对算法精度的估计. 10折交叉检验最常见,是因为通过利用大量数据集.使用不同学习技术进行的大量试验,表明10折是获得最好误差估计的恰当选择,而且也有一些理论根据可以证明这一点.但这并非最终结论,争议仍然存在.而且似

machine learning in coding(python):拼接原始数据;生成高次特征

拼接原始数据: train_data = pd.read_csv('train.csv') test_data = pd.read_csv('test.csv') all_data = np.vstack((train_data.ix[:,1:-1], test_data.ix[:,1:-1])) numpy下的合并数组vstack和hstack函数: >>> a = np.ones((2,2)) >>> b = np.eye(2) >>> print

machine learning in coding(python):使用xgboost构建预测模型

接上篇:http://blog.csdn.net/mmc2015/article/details/47304591 def xgboost_pred(train,labels,test): params = {} params["objective"] = "reg:linear" params["eta"] = 0.005 params["min_child_weight"] = 6 params["subsamp

machine learning in coding(python):使用贪心搜索【进行特征选择】

print "Performing greedy feature selection..." score_hist = [] N = 10 good_features = set([]) # Greedy feature selection loop while len(score_hist) < 2 or score_hist[-1][0] > score_hist[-2][0]: scores = [] for f in range(len(Xts)): if f no

machine learning in coding(python):根据关键字合并feature,删除无用feature,转化为numpy数组

import pandas as pd import numpy as np from sklearn import preprocessing from keras.models import Sequential from keras.layers.core import Dense, Activation, Dropout # load training and test datasets train = pd.read_csv('../input/train_set.csv', pars