DP:硬币找零

在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资。我们应该注意到,人民币的硬币系统是100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数。

但不幸的是:我们可能没有这样一种好的硬币系统,因此用贪心算法不能求出最少的硬币数,甚至有些金钱总数还不能用这些硬币找零。例如,如果硬币系统是40,30,25元,那么37元就不能用这些硬币找零;95元的最少找零硬币数是3。又如,硬币系统是10,7,5,1元,那么12元用贪心法得到的硬币数为3,而最少硬币数是2。

你的任务就是:对于任意的硬币系统和一个金钱数,请你编程求出最少的找零硬币数;如果不能用这些硬币找零,请给出一种找零方法,使剩下的钱最少。

输入数据:

第1行,为N和T,其中1≤N≤500为硬币系统中不同硬币数;1≤T≤10000为需要用硬币找零的总数。

第2行为N个数值不大于65535的正整数,它们是硬币系统中各硬币的面值。

输出数据:

如T能被硬币系统中的硬币找零,请输出最少的找零硬币数。

如T不能被硬币系统中的硬币找零,请输出剩下钱数最少的找零方案中的所需的最少硬币数。

样例

输入文件名:coin.in

4 12

10 7 5 1

输出文件名:coin.out

2

思路:还是动态规划,设f[i]为所需要的最小硬币数,

            转移方程:f[i]=min{f[i-A[j]}+1;      边境条件:f[0]:=0;
//这道题题意还不太清楚,什么是找零??? 
代码:
var n,m:longint;
    f,init:array[-10000..10000]of longint;
    i,j:longint;
 
begin readln(n,m);
      for i:=1 to n do
          read(init[i]);
      fillchar(f,sizeof(f),$7F);
      f[0]:=0;
      for i:=1 to m do
          for j:=1 to n do
              if f[i]>f[i-init[j]]+1
                 then f[i]:=f[i-init[j]]+1;
      if f[m]<>2139062143
         then writeln(f[m])
         else begin i:=m-1;
                    while f[i]=2139062143 do
                          dec(i);
                    writeln(f[i]);
              end;
 
end.
时间: 2024-10-22 16:38:58

DP:硬币找零的相关文章

nyoj995硬币找零(dp完全背包)

硬币找零 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该注意到,人民币的硬币系统是 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05, 0.02,0.01 元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数. 但不幸的是: 我们可能没有这样一种好的硬币系统, 因此

硬币找零-记忆化搜索(DP动态规划)

硬币找零 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该注意到,人民币的硬币系统是 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05, 0.02,0.01 元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数. 但不幸的是: 我们可能没有这样一种好的硬币系统, 因此

codevs 3961 硬币找零【完全背包DP/记忆化搜索】

题目描述 Description 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该注意到,人民币的硬币系统是100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01 元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数.但不幸的是:我们可能没有这样一种好的硬币系统,因此用贪心算法不能求出最少的硬币数,甚至有些金钱总数还不能用这些硬币

硬币找零问题

硬币找零问题一个经典问题,也是阐述动态规划法几乎必讲的一个例子. 硬币找零问题描述:现存在一堆面值为 V1.V2.V3 - 个单位的硬币, 各单位的硬币数目不限, 问最少需要多少个硬币才能找出总值为 T 个单位的零钱? 比如: 假设这一堆面值分别为 1.2.5.21.25 元,需要找出总值 T 为 63 元的零钱. 基于动态规划的思想,我们可以从目标值为 1 元开始计算出最少需要几个硬币,然后再求 2 元.3元- 每一次求得的结果都保存在一个数组中,以后需要用到时则直接取出即可. #includ

硬币找零问题之动态规划

今天我们看一下动态规划的硬币找零问题,主要通过一系列编程题分析动态规划的规律,只要掌握这一规律,许多动态规划的相关问题都可以类比得到. 题目1:给定数组arr,arr中所有的值都是正数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim代表要找的钱数,求组成aim的最少货币数. 举例: arr[5,2,3],aim=20.  4张5元可以组成20元,其他的找钱方案都要使用更多张的货币,所以返回4. 题解: 一眼看去这道题好像可以用贪心算法可解,但是仔细分析发现有

硬币找零问题的动态规划实现

一,问题描述 给定一组硬币数,找出一组最少的硬币数,来找换零钱N. 比如,可用来找零的硬币为: 1.3.4   待找的钱数为 6.用两个面值为3的硬币找零,最少硬币数为2.而不是 4,1,1 因此,总结下该问题的特征:①硬币可重复多次使用.②在某些情况下,该问题可用贪心算法求解.具体可参考:某种 找换硬币问题的贪心算法的正确性证明 二,动态规划分析 为了更好的分析,先对该问题进行具体的定义:将用来找零的硬币的面值存储在一个数组中.如下: coinsValues[i] 表示第 i 枚硬币的面值.比

NYOJ 995 硬币找零

硬币找零 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该注意到,人民币的硬币系统是 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05, 0.02,0.01 元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数. 但不幸的是: 我们可能没有这样一种好的硬币系统, 因此

硬币找零&&爬楼梯&&猴子摘香蕉

硬币找零&&爬楼梯&&猴子摘香蕉 假设有几种硬币,如1.3.5,并且数量无限.请找出能够组成某个数目的找零所使用最少的硬币数. #include"CoinProblem.h" #include<iostream> int countNum=MAX; void CoinProblem(int *coin,int Length,int Value,int count){ if(Value==0){ if(countNum>count){ c

动态规划求解最多有几种方案求解硬币找零问题

一,问题描述 假设有 m 种面值不同的硬币,存储在 coinsValues数组中,现需要使用这些硬币来找钱,各种硬币的使用个数不限. 求对于给定的钱数N,我们最多有几种不同的找钱方式.硬币的顺序并不重要. 二,动态规划分析 为了更好的分析,先对该问题进行具体的定义:将用来找零的硬币的面值存储在一个数组中.如下: coinsValues[i] 表示第 i 枚硬币的面值.比如, 第 i 枚硬币     面值 1                1 2                3 3