关于级联分类器训练过程中遇到的问题

  

  最近在做级联分类器的训练,训练和识别过程中不断的遇到的问题,现在把想起来的问题记录下来,方便以后再遇见的时候可以方便查阅,如果有同样做此项目的朋友,欢迎交流!

训练时负样本的准备:

  我们自己制作了一个工具,将训练和识别所需要的所有步骤集中在一起,而不需要一个.bat一个.bat的训练或者识别。但是我们的工具在负样本准备阶段,不管是训练还是识别,只要样本个数超过30000个就会提示“遇到不适当的参数”的提醒,我检查了内存分配,数组大小检查,及有可能的逻辑错误,仍然出现这个讨厌的东西。但是也不能不训练啊,于是先利用cmd命令准备负样本。

  我本身对cmd命令并不熟悉,趁此机会学习一下,也算是对自己的一点安慰吧!

  我喜欢准备负样本时使用样本的全路径,这样可以不用考虑它的存放位置。首先打开cmd窗口,进入到负样本所在的目录

  

输入命令:dir /s/b >Negative.dat

  

/s:表示显示其中的子文件夹。

/b: 可以使dir命令不显示额外的其它信息。

在负样本目录下就会生成negative.dat文件了,然后按照自己的需要修改下就可以了。

时间: 2024-10-13 10:27:52

关于级联分类器训练过程中遇到的问题的相关文章

OpenCV中的Haar+Adaboost(七):分类器训练过程

本节文章讲解OpenCV中Haar+Adaboost的训练过程.此文章假定读者已经了解前面5章的内容,包括Haar特征,弱分类器和强分类器结构,以及GAB等内容. 在opencv_traincascade.exe程序中,有如下参数 如上输入的boostParams中的6个参数决用于决定训练过程: 1. 参数bt选择Boosting类型(默认GAB),本系列文章五中已经介绍了 2. minHitRate和maxFalseAlarmRate限定训练过程中各种阈值大小,文章六已经介绍了 3. 参数we

机器学习-分类器-级联分类器训练(Train CascadeClassifier )

一.简介: adaboost分类器由级联分类器构成,"级联"是指最终的分类器是由几个简单分类器级联组成.在图像检测中,被检窗口依次通过每一级分类器,这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域. 分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测.检测到目标区域输出为1,否则输出为0.为了检测整副图像,在图像中移动搜索窗口,检测每一个位置来确定可能的目标.为了搜索不同大小的目标物体,在图像中检测未知大小的目标物体,扫描过程中用不同

DeepLearning tutorial(2)机器学习算法在训练过程中保存参数

我是小白,说的不是很好,请原谅 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43169019 参考:pickle - Python object serialization.DeepLearning Getting started 一.python读取"***.pkl.gz"文件 用到Python里的gzip以及cPickle模块,简单的使用代码如下,如果想详细了解可以参考上面给出的链接. [p

TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题

一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non

(转)理解YOLOv2训练过程中输出参数含义

最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨论再合适不过了,下边是我训练中使用的 .cfg 文件(你可以在cfg文件夹下找到它): 以下是训练过程中终端输出的一个截图: 以上截图显示了所有训练图片的一个批次(batch),批次大小的划分根据我们在 .cfg 文件中设置的subdivisions参数.在我使用的 .cfg 文件中 batch =

目标检测程序开发(三)——级联分类器训练

目标检测分为3个阶段 1.      样本创建 2.      训练分类器 3.      使用训练好的分类器进行目标检测 级联分类器 源地址http://www.opencv.org.cn/opencvdoc/2.3.2/html/modules/objdetect/doc/cascade_classification.html 基于Haar特征的用于目标检测的级联分类器 下面描述的目标检测器最初由PaulViola提出,由RainerLienhart改进, 论文分别是Paul Viola a

级联分类器训练-----OpenCV

关键词:级联分类器.opencv_traincascade 下面简述操作过程: 准备正负样本:neg.pos 正负样本路径生成:dir /a/b>path.txt //path:pos or neg 正样本训练集生成:opencv_createsamples.exe -info pos\pos.txt -vec pos\pos.vec -num 799 -w 24 -h 24  pause 样本训练:opencv_traincascade.exe -data data -vec pos/pos.

模型训练过程中的训练集、训练开发集、开发集和测试集总结

36.什么时候你应该在不同分布上做训练和测试 当你的猫app已经上传10000张图,你已经人工标记它们有没有猫,同时你有200000张互联网上下载的图,这时你要怎么划分训练开发测试集呢? 当你训练深度学习模型时,可能必须用到那200000张图,那么训练和测试集的分布就不同,这会怎样影响你的工作呢? 当然将210000张图片随机分裂到训练开发测试集是一种方法,但我(吴恩达)不推荐这种方法,记住选择开发测试集的推荐方法是:选择你未来预期会得到的数据来作为开发测试集. 大多数学术文章假设训练开发测试集

实现能够在训练过程中手动更改学习率

在深度学习框架PyTorch一书的学习-第六章-实战指南和pytorch Debug —交互式调试工具Pdb (ipdb是增强版的pdb)-1-在pytorch中使用 和 pytorch实现性别检测三篇文章的基础上写的这篇文章 之前我们使用的是: exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer_conv, step_size=3, gamma=0.1) 去自动递减学习率,但是这种方法还是十分死板的,希望实现能够手动根据收敛地效果去更改