进程管理(三)

(一):进程创建

linux不同于其他操作系统,linux在进程的创建的时候,将进程的创建和执行程序分成了两个函数,fork()和exec()。进程在创建的过程中,首先通过fork()函数拷贝一份当前进程来创建一个子进程。子进程和父进程的区别仅仅在于PID,PPID(父进程的进程号,子进程将其设置为被拷贝进程的进程号)和某些资源以及统计量(被挂起的信号等)。exec()函数负责执行负责执行可执行文件并将其载入地址空间开始运行。

1:写时拷贝

在传统的fotk()函数中,直接将进程的所有的资源复制给新创建的进程,这样有一些不好的地方,首先,这样会使得进程创建缓慢,其次就是有很多没有必要继承的数据被无辜继承下来,后来还需要修改,这样就会造成效率低下。

现在有了写时拷贝(copy-on-write),这是一种推迟甚至免除拷贝数据的技术,在进程被创建的时候,内核并不是复制整个进程地址空间,而是让父进程和子进程共享同一个拷贝。只有在需要写入的时候,数据才会被复制。

2:fork()

Linux通过clone()系统调用实现fork()。这个调用通过一系列的参数标志来指明父,子进程需要共享的资源。其中fork(),vfork(),_clone()都根据各自需要的参数标志去调用clone(),然后clone()在去调用dk_fork()。最后do_fork()调用copy_process()让进程开始运行。下面我们来看一下该调用过程。其中基本上大部分定义在 kernel/fork.c中。

我们首先看一下copy_process()函数:

/*
 * This creates a new process as a copy of the old one,
 * but does not actually start it yet.
 *
 * 该方法会创建一个旧进程的拷贝,但是他并没有真实运行
 *
 * It copies the registers, and all the appropriate
 * parts of the process environment (as per the clone
 * flags). The actual kick-off is left to the caller.
 *
 * 他会复制寄存器的内容,以及进程环境所有可能的部分。
 *
 */
static struct task_struct *copy_process(unsigned long clone_flags,
                    unsigned long stack_start,
                    struct pt_regs *regs,
                    unsigned long stack_size,
                    int __user *parent_tidptr,
                    int __user *child_tidptr,
                    int pid)
{
    int retval;
    struct task_struct *p = NULL;
    if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
        return ERR_PTR(-EINVAL);
    /*
     * Thread groups must share signals as well, and detached threads
     * can only be started up within the thread group.
     *
     * 线程组一定要共享信号,并且分离的线程也仅仅能在线程组中运行。
     *
     */
    if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
        return ERR_PTR(-EINVAL);
    /*
     * Shared signal handlers imply shared VM. By way of the above,
     * thread groups also imply shared VM. Blocking this case allows
     * for various simplifications in other code.
     */
    if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
        return ERR_PTR(-EINVAL);
    retval = security_task_create(clone_flags);
    if (retval)
        goto fork_out;
    retval = -ENOMEM;
    /*
     * 使用dump_task_struct()为新进程创建一个内核栈,thread_info结构和task_struct,这些值
     * 与当前进程相同,此时,子进程和父进程的描述符是完全一样的。
     *
     */
    p = dup_task_struct(current);
    /*
     * 创建完成之后,检查新创建进程的正确性,以及当前拥有的进程数目没有
     * 超过给他分配的资源的限制。
     *
     * 子进程开始着手将自己与父进程区别开来,进程描述符中的很多成员需要被清0
     * 或被设置为初始值。
     */
    if (!p)
        goto fork_out;
#ifdef CONFIG_TRACE_IRQFLAGS
    DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
    DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
#endif
    retval = -EAGAIN;
    if (atomic_read(&p->user->processes) >=
            p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
        if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
                p->user != &root_user)
            goto bad_fork_free;
    }
    atomic_inc(&p->user->__count);
    atomic_inc(&p->user->processes);
    get_group_info(p->group_info);
    /*
     * If multiple threads are within copy_process(), then this check
     * triggers too late. This doesn‘t hurt, the check is only there
     * to stop root fork bombs.
     */
    if (nr_threads >= max_threads)
        goto bad_fork_cleanup_count;
    if (!try_module_get(task_thread_info(p)->exec_domain->module))
        goto bad_fork_cleanup_count;
    if (p->binfmt && !try_module_get(p->binfmt->module))
        goto bad_fork_cleanup_put_domain;
    p->did_exec = 0;
    delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
    /*
     * copy_flags()函数被调用,来更新task_struct的flags成员。表明进程
     * 是否拥有超级权限的PF_SUPERPRIV标志被清0,表明进程还没有调用exec()
     * 函数的PF_FORKNOEXEC标志被设置
     */
    copy_flags(clone_flags, p);
    /*
     * 由于之前函数刚开始的时候,调用函数alloc_pid()函数已经为该进程
     * 分配了pid,在这里只需设置新创建进程的pid即可。
     *
     */
    p->pid = pid;
    retval = -EFAULT;
    // 根据传递的参数标志,copy_process()拷贝或共享打开的文件,文件系统信息,
    // 信号处理函数,进程地址空间和命名空间等。
    if (clone_flags & CLONE_PARENT_SETTID)
        if (put_user(p->pid, parent_tidptr))
            goto bad_fork_cleanup_delays_binfmt;
    INIT_LIST_HEAD(&p->children);
    INIT_LIST_HEAD(&p->sibling);
    p->vfork_done = NULL;
    spin_lock_init(&p->alloc_lock);
    clear_tsk_thread_flag(p, TIF_SIGPENDING);
    init_sigpending(&p->pending);
    p->utime = cputime_zero;
    p->stime = cputime_zero;
    p->sched_time = 0;
    p->rchar = 0;       /* I/O counter: bytes read */
    p->wchar = 0;       /* I/O counter: bytes written */
    p->syscr = 0;       /* I/O counter: read syscalls */
    p->syscw = 0;       /* I/O counter: write syscalls */
    acct_clear_integrals(p);
    p->it_virt_expires = cputime_zero;
    p->it_prof_expires = cputime_zero;
    p->it_sched_expires = 0;
    INIT_LIST_HEAD(&p->cpu_timers[0]);
    INIT_LIST_HEAD(&p->cpu_timers[1]);
    INIT_LIST_HEAD(&p->cpu_timers[2]);
    p->lock_depth = -1;     /* -1 = no lock */
    do_posix_clock_monotonic_gettime(&p->start_time);
    p->security = NULL;
    p->io_context = NULL;
    p->io_wait = NULL;
    p->audit_context = NULL;
    cpuset_fork(p);
#ifdef CONFIG_NUMA
    p->mempolicy = mpol_copy(p->mempolicy);
    if (IS_ERR(p->mempolicy)) {
        retval = PTR_ERR(p->mempolicy);
        p->mempolicy = NULL;
        goto bad_fork_cleanup_cpuset;
    }
    mpol_fix_fork_child_flag(p);
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
    p->irq_events = 0;
    p->hardirqs_enabled = 0;
    p->hardirq_enable_ip = 0;
    p->hardirq_enable_event = 0;
    p->hardirq_disable_ip = _THIS_IP_;
    p->hardirq_disable_event = 0;
    p->softirqs_enabled = 1;
    p->softirq_enable_ip = _THIS_IP_;
    p->softirq_enable_event = 0;
    p->softirq_disable_ip = 0;
    p->softirq_disable_event = 0;
    p->hardirq_context = 0;
    p->softirq_context = 0;
#endif
#ifdef CONFIG_LOCKDEP
    p->lockdep_depth = 0; /* no locks held yet */
    p->curr_chain_key = 0;
    p->lockdep_recursion = 0;
#endif
    rt_mutex_init_task(p);
#ifdef CONFIG_DEBUG_MUTEXES
    p->blocked_on = NULL; /* not blocked yet */
#endif
    p->tgid = p->pid;
    if (clone_flags & CLONE_THREAD)
        p->tgid = current->tgid;
    if ((retval = security_task_alloc(p)))
        goto bad_fork_cleanup_policy;
    if ((retval = audit_alloc(p)))
        goto bad_fork_cleanup_security;
    /* copy all the process information */
    if ((retval = copy_semundo(clone_flags, p)))
        goto bad_fork_cleanup_audit;
    if ((retval = copy_files(clone_flags, p)))
        goto bad_fork_cleanup_semundo;
    if ((retval = copy_fs(clone_flags, p)))
        goto bad_fork_cleanup_files;
    if ((retval = copy_sighand(clone_flags, p)))
        goto bad_fork_cleanup_fs;
    if ((retval = copy_signal(clone_flags, p)))
        goto bad_fork_cleanup_sighand;
    if ((retval = copy_mm(clone_flags, p)))
        goto bad_fork_cleanup_signal;
    if ((retval = copy_keys(clone_flags, p)))
        goto bad_fork_cleanup_mm;
    if ((retval = copy_namespace(clone_flags, p)))
        goto bad_fork_cleanup_keys;
    retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
    if (retval)
        goto bad_fork_cleanup_namespace;
    p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
    /*
     * Clear TID on mm_release()?
     */
    p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
    p->robust_list = NULL;
#ifdef CONFIG_COMPAT
    p->compat_robust_list = NULL;
#endif
    INIT_LIST_HEAD(&p->pi_state_list);
    p->pi_state_cache = NULL;
    /*
     * sigaltstack should be cleared when sharing the same VM
     */
    if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
        p->sas_ss_sp = p->sas_ss_size = 0;
    /*
     * Syscall tracing should be turned off in the child regardless
     * of CLONE_PTRACE.
     */
    clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
#ifdef TIF_SYSCALL_EMU
    clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif
    /* Our parent execution domain becomes current domain
       These must match for thread signalling to apply */

    p->parent_exec_id = p->self_exec_id;
    /* ok, now we should be set up.. */
    p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
    p->pdeath_signal = 0;
    p->exit_state = 0;
    /*
     * Ok, make it visible to the rest of the system.
     * We dont wake it up yet.
     */
    p->group_leader = p;
    INIT_LIST_HEAD(&p->thread_group);
    INIT_LIST_HEAD(&p->ptrace_children);
    INIT_LIST_HEAD(&p->ptrace_list);
    /* Perform scheduler related setup. Assign this task to a CPU. */
    sched_fork(p, clone_flags);
    /* Need tasklist lock for parent etc handling! */
    write_lock_irq(&tasklist_lock);
    /*
     * The task hasn‘t been attached yet, so its cpus_allowed mask will
     * not be changed, nor will its assigned CPU.
     *
     * The cpus_allowed mask of the parent may have changed after it was
     * copied first time - so re-copy it here, then check the child‘s CPU
     * to ensure it is on a valid CPU (and if not, just force it back to
     * parent‘s CPU). This avoids alot of nasty races.
     */
    p->cpus_allowed = current->cpus_allowed;
    if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
            !cpu_online(task_cpu(p))))
        set_task_cpu(p, smp_processor_id());
    /* CLONE_PARENT re-uses the old parent */
    if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
        p->real_parent = current->real_parent;
    else
        p->real_parent = current;
    p->parent = p->real_parent;
    spin_lock(¤t->sighand->siglock);
    /*
     * Process group and session signals need to be delivered to just the
     * parent before the fork or both the parent and the child after the
     * fork. Restart if a signal comes in before we add the new process to
     * it‘s process group.
     * A fatal signal pending means that current will exit, so the new
     * thread can‘t slip out of an OOM kill (or normal SIGKILL).
     */
    recalc_sigpending();
    if (signal_pending(current)) {
        spin_unlock(¤t->sighand->siglock);
        write_unlock_irq(&tasklist_lock);
        retval = -ERESTARTNOINTR;
        goto bad_fork_cleanup_namespace;
    }
    if (clone_flags & CLONE_THREAD) {
        p->group_leader = current->group_leader;
        list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
        if (!cputime_eq(current->signal->it_virt_expires,
                cputime_zero) ||
            !cputime_eq(current->signal->it_prof_expires,
                cputime_zero) ||
            current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
            !list_empty(¤t->signal->cpu_timers[0]) ||
            !list_empty(¤t->signal->cpu_timers[1]) ||
            !list_empty(¤t->signal->cpu_timers[2])) {
            /*
             * Have child wake up on its first tick to check
             * for process CPU timers.
             */
            p->it_prof_expires = jiffies_to_cputime(1);
        }
    }
    /*
     * inherit ioprioretval
     */
    p->ioprio = current->ioprio;
    if (likely(p->pid)) {
        add_parent(p);
        if (unlikely(p->ptrace & PT_PTRACED))
            __ptrace_link(p, current->parent);
        if (thread_group_leader(p)) {
            p->signal->tty = current->signal->tty;
            p->signal->pgrp = process_group(current);
            p->signal->session = current->signal->session;
            attach_pid(p, PIDTYPE_PGID, process_group(p));
            attach_pid(p, PIDTYPE_SID, p->signal->session);
            list_add_tail_rcu(&p->tasks, &init_task.tasks);
            __get_cpu_var(process_counts)++;
        }
        attach_pid(p, PIDTYPE_PID, p->pid);
        nr_threads++;
    }
    total_forks++;
    spin_unlock(¤t->sighand->siglock);
    write_unlock_irq(&tasklist_lock);
    proc_fork_connector(p);
    //最后返回新创建进程描述符的指针
    return p;
bad_fork_cleanup_namespace:
    exit_namespace(p);
bad_fork_cleanup_keys:
    exit_keys(p);
bad_fork_cleanup_mm:
    if (p->mm)
        mmput(p->mm);
bad_fork_cleanup_signal:
    cleanup_signal(p);
bad_fork_cleanup_sighand:
    __cleanup_sighand(p->sighand);
bad_fork_cleanup_fs:
    exit_fs(p); /* blocking */
bad_fork_cleanup_files:
    exit_files(p); /* blocking */
bad_fork_cleanup_semundo:
    exit_sem(p);
bad_fork_cleanup_audit:
    audit_free(p);
bad_fork_cleanup_security:
    security_task_free(p);
bad_fork_cleanup_policy:
#ifdef CONFIG_NUMA
    mpol_free(p->mempolicy);
bad_fork_cleanup_cpuset:
#endif
    cpuset_exit(p);
bad_fork_cleanup_delays_binfmt:
    delayacct_tsk_free(p);
    if (p->binfmt)
        module_put(p->binfmt->module);
bad_fork_cleanup_put_domain:
    module_put(task_thread_info(p)->exec_domain->module);
bad_fork_cleanup_count:
    put_group_info(p->group_info);
    atomic_dec(&p->user->processes);
    free_uid(p->user);
bad_fork_free:
    free_task(p);
fork_out:
    return ERR_PTR(retval);
}

这样,我们来梳理一下copy_process()的工作流程。

根据代码,当该函数被调用的时候,首先会调用alloc_pid()函数分配一个新的pid。接着进程下面的操作:

1:调用dump_task_struct()函数为为新进程创建一个内核栈,thread_info结构和task_struct,这些值和当前进程的值相同。此时,子进程和父进程的进程描述符是完全一样的。

2:接着,程序会检查新创建的子进程的正确性,并且检查当前用户所拥有的进程数目没有超过给他分配的资源限制。

3:子进程着手将自己与父进程去被开来。进程描述符内的很多成员都要被清0或者是设置为初始值。    

4:子进程的状态被设置为TASK_UNINTERRUPTIBLE,来保证不会投入运行

5:调用copy_flags()来更新task_struct的flags成员。表示用户是否拥有超级权限的标志PF_SUPERPRIV被清0.

6:设置新进程的pid

7:根据clone()传递的参数标志,copy_process()拷贝或共享打开的文件,文件系统信息,信号处理函数,进程地址空间和命名空间等。

8:最后,返回一个指向子进程的指针。
时间: 2024-11-01 16:47:04

进程管理(三)的相关文章

Linux下进程管理工具之(三):glances

实验环境: CentOS release 6.6 (Final)  一台 IP地址:172.16.249.230 glances 是一款用于 Linux.BSD 的开源命令行系统监视工具,它使用 Python 语言开发,能够监视 CPU.负载.内存.磁盘 I/O.网络流量.文件系统.系统温度等信息.本文介绍 glances 的使用方法和技巧,帮助 Linux 系统管理员了解掌握服务器性能. 一.glances简介 glances 可以为 Unix 和 Linux 性能专家提供监视和分析性能数据的

Linux内核分析——第三章 进程管理

第三章 进程管理 3.1 进程 1.进程就是处于执行期的程序:进程就是正在执行的程序代码的实时结果:进程是处于执行期的程序以及相关的资源的总称:进程包括代码段和其他资源. 线程:是在进程中活动的对象. 2.执行线程,简称线程,是在进程中活动的对象.每个线程都拥有一个独立的程序计数器.进程栈和一组进程寄存器. 3.内核调度的对象是线程,而不是进程.Linux对线程并不特别区分,视其为特殊的进程 4.在现代操作系统中,进程提供两种虚拟机制:虚拟处理器和虚拟内存.在线程之间可以共享虚拟内存,但每个都拥

Linux进程管理与调度-之-目录导航【转】

转自:http://blog.csdn.net/gatieme/article/details/51456569 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme 目录(?)[-] 项目链接 进程的描述 进程的创建 进程的加载与运行 进程的退出 进程的调度 调度普通进程-完全公平调度器CFS 日期 内核版本 架构 作者 GitHub CSDN 2016-07-21 Linux-4.6 X86 & arm gatieme

进程管理

一.进程 1.概念 内核的功用:进程管理.文件系统.网络功能.内存管理.驱动程序.安全功能等 Process: 运行中的程序的一个副本,是被载入内存的一个指令集合 进程ID(Process ID,PID)号码被用来标记各个进程 UID.GID.和SELinux语境决定对文件系统的存取和访问权限, 通常从执行进程的用户来继承 存在生命周期 task struct:Linux内核存储进程信息的数据结构格式 task list:多个任务的的taskstruct组成的链表 进程创建: init:第一个进

第五课 进程管理

unix_c_05.txt================第五课 进程管理================一.基本概念------------1. 进程与程序~~~~~~~~~~~~~1) 进程就是运行中的程序.一个运行着的程序,可能有多个进程.进程在操作系统中执行特定的任务.2) 程序是存储在磁盘上,包含可执行机器指令和数据的静态实体.进程或者任务是处于活动状态的计算机程序.2. 进程的分类~~~~~~~~~~~~~1) 进程一般分为交互进程.批处理进程和守护进程三类.2) 守护进程总是活跃的

Linux中的进程管理

什么是进程,顾名思义嘛!就是正在进行的程序,在Linux中,只要开启服务就会在后台对应的有了进程.那么进程管理究竟对于我们的日常运维工作有什么用呢? 主要作用有三点: 首先,最重要的是查看服务器健康状态 第二,查看系统中运行的所有进程 第三,杀死进程 我们用到进程最重要的作不就是用就是用来查看服务器的健康状态,做运维的不就是为了保证服务器能够一直这么正常运行吗? ① top命令 -->查看服务器健康状态 终端直接输入top,如图: 这里面最重要的就是前面的那5行,其中几个比较重要的参数如下: l

Linux基础--进程管理相关命令介绍(2)

本文主要介绍了Linux中进程管理的相关命令,涉及到的主要命令有top,vmstat等. (1)top ①功能:用来查看CPU,内存以及进程的状态. ②用例: ③相关注释: load average表示负载,三个数值分别表示第1分钟,第5分钟,第10分钟 Cpu中us表示用户空间程序占用百分比,sy表示内核模式占用百分比,ni表示调整NICE值所占用的    CPU百分比,id表示CPU的空闲比例,wa表示等待磁盘IO完成所占用的时间比例,hi表示硬件中断占     据的百分比,si表示软中断所

linux进程管理(5)---进程消亡

一.目的 本文将讲述进程是如何消亡的.一个进程既有父进程又有子进程,因此进程消亡时,既要通知父进程,也要安排好子进程. 当前进程消亡时主要做了三件大事:释放当前进程占用的资源:为当前进程的子进程重新寻找"养父":通知当前进程的父进程,释放当前进程剩下的资源. 当前进程释放掉大多数进程资源后,只保留内核栈.structtask_struct数据结构:剩下的资源由父进程负责释放. linux调用sys_exit().sys_wait4()实现进程的消亡,代码可以在kernel/exit.c

进程管理之工作管理详解(job control)

进程管理之工作管理详解(job control) 1 什么是工作管理(job control) 我们知道linux是多任务多终端工作的操作系统.我们可以在多个终端进行工作,也可以在一个终端进行多个任务工作.那在一个终端同时进行多个工作任务,就称为工作管理.比如这种情况,在一个终端,你想要复制文件,同时你还想压缩打包文件,甚至你还想编辑文件,这个时候就要用到工作管理.工作管理的情况,大概是这样的.直接上图. 首先,你要明白前台,后台的概念.前台就是当前我们登陆shell操作的终端,我们与之交互,看

进程管理及计划任务

进程的概念: 内核的功用:进程管理,文件系统,网络功能,内存管理, 驱动程序,等 process:运行中的程序的一个副本,是被载入内存的一个指令集合 进程ID(process ID,PID)号码被用来标记各个进程,UID, GID和SELinux语境决定对文件系统的存取和访问权限.通常从执行进程的用户来继承 在Centos6以前第一个进程init Centos7是systemd   为父子关系 进程:都是由其父进程创建,使用cow机制,(写时复制) 在没有写之前父子功用同一个空间,之后子进程单独