二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree)的比较

http://www.iteye.com/topic/614070

此少侠总结的特棒,直接收藏了。

我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree)。这四种树都具备下面几个优势:

(1) 都是动态结构。在删除,插入操作的时候,都不需要彻底重建原始的索引树。最多就是执行一定量的旋转,变色操作来有限的改变树的形态。而这些操作所付出的代价都远远小于重建一棵树。这一优势在《查找结构专题(1):静态查找结构概论 》中讲到过。

(2) 查找的时间复杂度大体维持在O(log(N))数量级上。可能有些结构在最差的情况下效率将会下降很快,比如BST。这个会在下面的对比中详细阐述。

下面我们开始概括性描述这四种树,并相互比较一下优劣。

1. 二叉查找树 (Binary Search Tree) 详细见《查找结构专题(2):二叉查找树 [BST] 》

很显然,二叉查找树的发现完全是因为静态查找结构在动态插入,删除结点所表现出来的无能为力(需要付出极大的代价)。

BST 的操作代价分析:

(1) 查找代价: 任何一个数据的查找过程都需要从根结点出发,沿某一个路径朝叶子结点前进。因此查找中数据比较次数与树的形态密切相关。

当树中每个结点左右子树高度大致相同时,树高为logN。则平均查找长度与logN成正比,查找的平均时间复杂度在O(logN)数量级上。

当先后插入的关键字有序时,BST退化成单支树结构。此时树高n。平均查找长度为(n+1)/2,查找的平均时间复杂度在O(N)数量级上。

(2) 插入代价: 新结点插入到树的叶子上,完全不需要改变树中原有结点的组织结构。插入一个结点的代价与查找一个不存在的数据的代价完全相同。

(3) 删除代价: 当删除一个结点P,首先需要定位到这个结点P,这个过程需要一个查找的代价。然后稍微改变一下树的形态。如果被删除结点的左、右子树只有一个存在,则改变形态的代价仅为O(1)。如果被删除结点的左、右子树均存在,只需要将当P的左孩子的右孩子的右孩子的...的右叶子结点与P互换,在改变一些左右子树即可。因此删除操作的时间复杂度最大不会超过O(logN)。

BST效率总结 : 查找最好时间复杂度O(logN),最坏时间复杂度O(N)。

插入删除操作算法简单,时间复杂度与查找差不多

2. 平衡二叉查找树 ( Balanced Binary Search Tree ) 详细见《查找结构专题(3):平衡二叉查找树 [AVL]

二叉查找树在最差情况下竟然和顺序查找效率相当,这是无法仍受的。事实也证明,当存储数据足够大的时候,树的结构对某些关键字的查找效率影响很大。当然,造成这种情况的主要原因就是BST不够平衡(左右子树高度差太大)。

既然如此,那么我们就需要通过一定的算法,将不平衡树改变成平衡树。因此,AVL树就诞生了。

AVL 的操作代价分析:

(1) 查找代价: AVL是严格平衡的BST(平衡因子不超过1)。那么查找过程与BST一样,只是AVL不会出现最差情况的BST(单支树)。因此查找效率最好,最坏情况都是O(logN)数量级的。

(2) 插入代价: AVL必须要保证严格平衡(|bf|<=1),那么每一次插入数据使得AVL中某些结点的平衡因子超过1就必须进行旋转操作。事实上,AVL的每一次插入结点操作最多只需要旋转1次(单旋转或双旋转)。因此,总体上插入操作的代价仍然在O(logN)级别上(插入结点需要首先查找插入的位置)。

(3) 删除代价:AVL删除结点的算法可以参见BST的删除结点,但是删除之后必须检查从删除结点开始到根结点路径上的所有结点的平衡因子。因此删除的代价稍微要大一些。每一次删除操作最多需要O(logN)次旋转。因此,删除操作的时间复杂度为O(logN)+O(logN)=O(2logN)

AVL 效率总结 : 查找的时间复杂度维持在O(logN),不会出现最差情况

AVL树在执行每个插入操作时最多需要1次旋转,其时间复杂度在O(logN)左右。

AVL树在执行删除时代价稍大,执行每个删除操作的时间复杂度需要O(2logN)。

3. 红黑树 (Red-Black Tree ) 详细见《查找结构专题(4):红黑树 [RBT] 》

二叉平衡树的严格平衡策略以牺牲建立查找结构(插入,删除操作)的代价,换来了稳定的O(logN) 的查找时间复杂度。但是这样做是否值得呢?

能不能找一种折中策略,即不牺牲太大的建立查找结构的代价,也能保证稳定高效的查找效率呢? 答案就是:红黑树。

RBT 的操作代价分析:

(1) 查找代价:由于红黑树的性质(最长路径长度不超过最短路径长度的2倍),可以说明红黑树虽然不像AVL一样是严格平衡的,但平衡性能还是要比BST要好。其查找代价基本维持在O(logN)左右,但在最差情况下(最长路径是最短路径的2倍少1),比AVL要略逊色一点。

(2) 插入代价:RBT插入结点时,需要旋转操作和变色操作。但由于只需要保证RBT基本平衡就可以了。因此插入结点最多只需要2次旋转,这一点和AVL的插入操作一样。虽然变色操作需要O(logN),但是变色操作十分简单,代价很小。

(3) 删除代价:RBT的删除操作代价要比AVL要好的多,删除一个结点最多只需要3次旋转操作。

RBT 效率总结 : 查找 效率最好情况下时间复杂度为O(logN),但在最坏情况下比AVL要差一些,但也远远好于BST。

插入和删除操作改变树的平衡性的概率要远远小于AVL(RBT不是高度平衡的)。因此需要的旋转操作的可能性要小,而且一旦需要旋转,插入一个结点最多只需要旋转2次,删除最多只需要旋转3次(小于AVL的删除操作所需要的旋转次数)。虽然变色操作的时间复杂度在O(logN),但是实际上,这种操作由于简单所需要的代价很小。

4. B~树/B+树 (B-Tree ) 详细见《查找结构专题(5):B~树/B+树 》

对于在内存中的查找结构而言,红黑树的效率已经非常好了(实际上很多实际应用还对RBT进行了优化)。但是如果是数据量非常大的查找呢?将这些数据全部放入内存组织成RBT结构显然是不实际的。实际上,像OS中的文件目录存储,数据库中的文件索引结构的存储.... 都不可能在内存中建立查找结构。必须在磁盘中建立好这个结构。那么在这个背景下,RBT还是一种好的选择吗?

在磁盘中组织查找结构,从任何一个结点指向其他结点都有可能读取一次磁盘数据,再将数据写入内存进行比较。大家都知道,频繁的磁盘IO操作,效率是很低下的(机械运动比电子运动要慢不知道多少)。显而易见,所有的二叉树的查找结构在磁盘中都是低效的。因此,B树很好的解决了这一个问题。

B-Tree的操作代价分析:

(1) 查找代价: B-Tree作为一个平衡多路查找树(m-叉)。B树的查找分成两种:一种是从一个结点查找另一结点的地址的时候,需要定位磁盘地址(查找地址),查找代价极高。另一种是将结点中的有序关键字序列放入内存,进行优化查找(可以用折半),相比查找代价极低。而B树的高度很小,因此在这一背景下,B树比任何二叉结构查找树的效率都要高很多。而且B+树作为B树的变种,其查找效率更高。

(2)插入代价: B-Tree的插入会发生结点的分裂操作。当插入操作引起了s个节点的分裂时,磁盘访问的次数为h(读取搜索路径上的节点)+2s(回写两个分裂出的新节点)+1(回写新的根节点或插入后没有导致分裂的节点)。因此,所需要的磁盘访问次数是h+2s+1,最多可达到3h+1。因此插入的代价是很大的。

(3)删除代价:B-Tree的删除会发生结点合并操作。最坏情况下磁盘访问次数是3h=(找到包含被删除元素需要h次
读访问)+(获取第2至h层的最相邻兄弟需要h-1次读访问)+(在第3至h层的合并需要h-2次写
访问)+(对修改过的根节点和第2层的两个节点进行3次写访问)

B-Tree效率总结: 由于考虑磁盘储存结构,B树的查找、删除、插入的代价都远远要小于任何二叉结构树(读写磁盘次数的降低)。

动态查找树结构的对比:

(1) 平衡二叉树和红黑树 [AVL PK RBT]

AVL 和RBT 都是二叉查找树的优化。其性能要远远好于二叉查找树。他们之间都有自己的优势,其应用上也有不同。

结构对比: AVL的结构高度平衡,RBT的结构基本平衡。平衡度AVL > RBT.

查找对比: AVL 查找时间复杂度最好,最坏情况都是O(logN)。

RBT 查找时间复杂度最好为O(logN),最坏情况下比AVL略差。

插入删除对比: 1. AVL的插入和删除结点很容易造成树结构的不平衡,而RBT的平衡度要求较低。因此在大量数据插入的情况下,RBT需要通过旋转变色操作来重新达到平衡的频度要小于AVL。

2. 如果需要平衡处理时,RBT比AVL多一种变色操作,而且变色的时间复杂度在O(logN)数量级上。但是由于操作简单,所以在实践中这种变色仍然是非常快速的。

3. 当插入一个结点都引起了树的不平衡,AVL和RBT都最多需要2次旋转操作。但删除一个结点引起不平衡后,AVL最多需要logN 次旋转操作,而RBT最多只需要3次。因此两者插入一个结点的代价差不多,但删除一个结点的代价RBT要低一些。

4. AVL和RBT的插入删除代价主要还是消耗在查找待操作的结点上。因此时间复杂度基本上都是与O(logN) 成正比的。

总体评价:大量数据实践证明,RBT的总体统计性能要好于平衡二叉树。

(2) B~树和B+树 [ B~Tree PK B+Tree]

B+树是B~树的一种变体,在磁盘查找结构中,B+树更适合文件系统的磁盘存储结构。

结构对比: B~树是平衡多路查找树,所有结点中都包含了待查关键字的有效信息(比如文件磁盘指针)。每个结点若有n个关键字,则有n+1个指向其他结点的指针。

B+树严格意义上说已经不是树,它的叶子结点之间也有指针链接。B+树的非终结点中并不含有关键字的信息,需要查找的关键字的全部信息都包含在叶子结点上。非终结点中只作为叶子结点关键字的索引而存在。

查找对比:1. 在相同数量的待查数据下,B+树查找过程中需要调用的磁盘IO操作要少于普通B~树。由于B树所在的磁盘存储背景下,因此B+树的查找性能要好于B~树。

2. B+树的查找效率更加稳定,因为所有叶子结点都处于同一层中,而且查找所有关键字都必须走完从根结点到叶子结点的全部历程。因此同一颗B+树中,任何关键字的查找比较次数都是一样的。而B树就不一定了,可能查找到某一个非终结点就结束了。

插入删除对比: B+树与B~树在插入删除操作中的效率是差不多的。

总体评价:在应用背景下,特别是文件结构存储中。B+树的应用要更多,其效率也要比B~树好。

字符串查找结构

这次专题所讲的BST、AVL、BRT、B~Tree等可以胜任对任何关键字数据进行查找。但对字符串的查找(字符串匹配)结构,有专门的结构和算法。详见:《KMP算法 》,《Trie Tree 》

时间: 2024-10-11 12:55:50

二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree)的比较的相关文章

能够自平衡的【红黑树】,必知必会

红黑树 红黑树(英语:Red–black tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组.它是在1972年由鲁道夫·贝尔发明的,他称之为"对称二叉B树",它现代的名字是在Leo J. Guibas和Robert Sedgewick于1978年写的一篇论文中获得的.它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的:它可以在 O(logn)时间内做查找,插入和删除,这里的n是树中元素的数目,摘自:维基百科-红黑树. 特点

二叉树,平衡树,红黑树,B~/B+树汇总

二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到过. (2) 查找的时间复杂度大体维持在O(log(N))数量级上.可能有些结构在最差的情况下效率将会下降很快,比如二叉树 1.二叉查找树

图解数据结构(7)——二叉查找树及平衡二叉查找树(一共14篇)

这篇将是最有难度和挑战性的一篇,做好心理准备!十.二叉查找树(BST)前一篇介绍了树,却未介绍树有什么用.但就算我不说,你也能想得到,看我们Windows的目录结构,其实就是树形的,一个典型的分类应用.当然除了分类,树还有别的作用,我们可以利用树建立一个非常便于查找取值又非常便于插入删除的数据结构,这就是马上要提到的二叉查找树(Binary Search Tree),这种二叉树有个特点:对任意节点而言,左子(当然了,存在的话)的值总是小于本身,而右子(存在的话)的值总是大于本身. 这种特性使得我

浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B

【查找结构3】平衡二叉查找树 [AVL]

在上一个专题中,我们在谈论二叉查找树的效率的时候.不同结构的二叉查找树,查找效率有很大的不同(单支树结构的查找效率退化成了顺序查找).如何解决这个问题呢?关键在于如何最大限度的减小树的深度.正是基于这个想法,平衡二叉树出现了. 平衡二叉树的定义 (AVL—— 发明者为Adel'son-Vel'skii 和 Landis) 平衡二叉查找树,又称 AVL树. 它除了具备二叉查找树的基本特征之外,还具有一个非常重要的特点:它 的左子树和右子树都是平衡二叉树,且左子树和右子树的深度之差的绝对值(平衡因子

树:BST、AVL、红黑树、B树、B+树

我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到过. (2) 查找的时间复杂度大体维持在O(log(N))数量级上.可能有些结构在最差的情况下效率将

红黑树与AVL树

概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树: ? 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值: ? 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值: ? 它的左.右子树也分别为排序二叉树. 下图显示了一棵排序二叉树: 对排序二叉树,若按中序遍历就可以得到由小到大的

B树、B+树、红黑树、AVL树

定义及概念 B树 二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树.阶为M的B树具有以下性质: 1.根节点在不为叶子节点的情况下儿子数为 2 ~ M2.除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M3.拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列4.所有叶子结点在同一层,即深度相同 (叶节点可以看成是一种外部节点,不包含任何关键字信息) 在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶

红黑树和AVL树的比较

1. 红黑树并不追求"完全平衡"--它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能. 红黑树能够以O(log2 n) 的时间复杂度进行搜索.插入.删除操作.此外,由于它的设计,任何不平衡都会在三次旋转之内解决.当然,还有一些更好的,但实现起来更复杂的数据结构,能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较"便宜"的解决方案.红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高. 当然,红黑树并不适应所有应用树的领域.如果数据基本上是