2015年可视化研究前沿动态

2015年可视化研究前沿动态

注:本文为作者最近所看文献的一点总结,可能比较片面,比较粗糙,也有可能存在错误,望相关领域的各大神们多加指点:-)。

利用Web of Science,分析当前可视化研究前沿,热点,与动态,新型技术。

1、可视化分析

可视化分析作为信息可视化与科学可视化的副产物,通过可交互界面,集中在可视化推理的推进。

主要应用于海量数据关联分析,由于所涉及到的信息比较分散、数据结构有可能不统一,而且通常以人工分析为主,加上分析过程的非结构性和不确定性,所以不易形成固定的分析流程或模式,很难将数据调入应用系统中进行分析挖掘。借助功能强大的可视化数据分析平台,可辅助人工操作将数据进行关联分析,并做出完整的分析图表。图表中包含所有事件的相关信息,也完整展示数据分析的过程和数据链走向。同时,这些分析图表也可通过另存为其他格式,供相关人员调阅。

可视化分析,是一个技术集合,它将人类的理解和认知能力与具有计算能力的电脑相结合,从大量复杂的数据集中获得知识。这个技术严重地依赖用户交互和人类视觉系统,而且与大数据存在交集。是大数据可视化的分支。IVA 是适合分析拥有大量数据点的高维数据的技术,而简单的图形和非交互技术不能给出一个满意的信息理解。

可视化分析学是一个多学科的领域,涉及以下方面:一是分析推理技术,它能使用户获得深刻的见解,这种见解直接支持评价、计划和决策的行为;二是可视化表示和交互技术,它充分利用人眼的宽带宽通道的视觉能力立即来观察、浏览和理解大量的信息;三是数据表示和变换,它以支持可视化和分析的方式转化所有类型的异构和动态数据;四是支持分析结果的产生,演示和传播的技术,它能与各种观众交流有适当背景资料的信息。[1]

1) 可视化分析云基础设施框架[2]

2) 社会多媒体的时空数据分析,异常事件探测与检查 季节性趋势分析研究[3]

3) 衍生:大规模文本语义可视化分析[4] ,社交媒体的数据信息可视化[5],微博语义轨迹[6],挖掘不规则的城市移动模式

4) 社会媒体异常信息,以及公共事业可视化分析[7, 8]

5) 高维数据可视化分析模型,使得交互可视化分析多维数据集 与 多维性 和真是数据值 结合。[9]

6) 针对大规模关键基础设施模拟的高移动性可视化分析架构集成[10]

7) iGraph:一种针对图片和文本集,基于图形的可视化分析技术[11]

8) 一种大规模复杂网络可视化分析的框架 [29]

9) SoDA:社会大数据的动态可视化分析 [12]

10) LeadLine: 事件识别与探索的文本数据交互可视化分析[13]

11) 可视化分析技术与应用研究:领先的研究和未来挑战[14]

12) TimeBench: 面向时间数据可视化分析 的 数据模型和软件库[15],

面向时间数据的模型,TimeBench软件库。分析了时间数据的复杂性,时间模型复杂。

13) imMens实时大数据的可视化查询[16],文章提出了一种预处理和动态加载的多元数据瓦片;实现了一个imMens系统,具有binned aggregation的数据简化,数据表示,并行GPU计算的大数据可视化交互。支持千万到十亿级别的记录的数据集。

14) 参考网络架构和模式的实时可视化分析大数据流[17]

15) 个性化可视化与个性化可视化分析[18]

16) 相关联的信息碎片,上下文保护的可视化链[19],提出的Visual Link 比 Synchronized visual highlight 跟具有表达性,它会把相关的元素用线连接并绘制出。文章提出了一种新的Visual link方法,即Context-progress Visual link 的方法,该方法基于图片可视化显著分析来确定在原始展示中重要的区域,应用到数据可视化分析中。

17) 多元轨迹复合密度图[20],移动对象作为一个多元时间序列,通过可视化分析这些属性,模式,可能显示出为何发生这已确定的移动。本文提出一种密度图来揭示这种模式,并展示一个弹性的密度图框架,能够自定义,多密度字段来多用途探索。

18) 故事情节的可视化软件,例如可视化人物关系图[21]

19) TimeGraph[22],大规模多变量的面向时间的网络数据,可视化分析方法,解决时间与拓扑的可视化表示。

20) 实时自动动态探索空间事件群,可视化的跟踪演化[23]

21) 带有地理标签的社会媒体数据OD分析,MovementFinder分析工具[24]

2、文本可视化

1) 文本语义分析TextFlow 一种无缝集成可视化主题挖掘技术,来分析从多个主题中浮现的多种演化模式[25]

2) 大规模文本语义可视化分析[4]

3) iGraph:一种针对图片和文本集,基于图形的可视化分析技术[11]

4) LeadLine: 事件识别与探索的文本数据交互可视化分析[13]

3、高维数据可视化

1) 用一种系统化的质量度量学方法,可视化探索高维数据中有意义的样品[26]

2) 高维数据可视化分析模型,使得交互可视化分析多维数据集 与 多维性 和真是数据值 结合。[9]

4、可视化的数据模型研究

1) TimeBench: 面向时间数据可视化分析 的 数据模型和软件库[15]

2) D-3: Data-Driven Documents [27]

3) 加速3D可视化计算使得Web上的大型模型可视化的空间数据结构[28]

4) 通过非均匀图形渲染增强云移动3D显示游戏用户体验

5) 基于子采样的压缩和流可视化[29]

6) CityGML 互操作语言的3D城市模型[30]

5、可视化方法

1) 加权图:地理定位定量的数据 treemap可视化[31],数据分级可视化技术。

2) 基于粒子的体渲染远程可视化系统[32]

3) 基于粒子的体渲染[33],以点的形式进行体渲染,不需要考虑深度顺序,因此,可进行并行计算。

4) Time-Synchronized Visualization of Arbitrary Data Streams 结合并行机制的savor可视化框架,可以是多个任意数据流同时显示。[34]

5) 免插件的浏览器自由远程可视化[35],将渲染结果发生到客户端,以图片或者一个视频流的形式。

6) WebGL中最先进的分子结构可视化技术[36],浏览器的远程可视化。

7) 可扩展的动态图可视化的平行边测绘[37],提出一种基于链节点的新的动态图可视化技术。为解决大规模图的边重合问题,我们采用一个分开的方法改变 边 成基于像素标量领域。

8) 线集设计研究,一个新的集合可视化技术[38],用弧段连接集合的元素,来可视化表示。针对大数据元素集合之间对比与可视化,以及它们之间的关系,是分析和组织大数据的常见任务。

9) VisBricks,大量,不同类的 多形式的 可视化[39],由于大量的现实世界的数据常展现出不同类的特性,在数据的垂直相关性形式上,或者独立维度集群形式或者分散的数据条目。研究者就是要去查找并理解在这些数据中不同类的形成的模式。静态方法可以揭示这些模式,然而,可视化这些结果几乎仍然在一视图适应多的方式。我们提出的新的可视化方法,VisBricks 承认数据中的多相,并且需要不同的可视化来适应这些在不同数据子集中的个别特性。整个数据集总的可视化是由小的可视化来组成,一个VisBricks对应每个集群在每个独立维度的群组中。鉴于所有的VisBricks一起给出一个可理解的不同数据组的高级别概括,每个VisBricks独立的显示这个组代表的详细信息。所有VisBricks之间的刷新和可视化连接,允许组之间的对比和它们中数据条目的分布。我们介绍VisBricks可视化概念,讨论设计的基本原理恶化实现,证明它的可用性。

10) 3D地图,在实时3D光场中显示的大规模3D地图数据的可视化与交互方法、仪器。[40]

11) 可视化修饰:叙事可视化的框架效果,叙事的可视化结合交流和探索信息可视化,传达一个预期的故事。[41]

12) 体可视化,提出一个体可视化系统, 接受基于sketch(即看即所得)的直接操作方法。[42]

13) 基于骨架的边构建 图形可视化[43]

14) 增加时间序列可视化技术,加上交互变形作为一种处理基于时间表示的大规模和动态事件数据集在有限的空间中。其挑战是,在进行分析的过程中,既要分析原子等级的事件数据,同时要保持在时间的背景下。提供一种需要保持最近事件与提供过去背景结合,来使得相关的样品在任意尺度可被访问。[44]

15) X-ray的流可视化的多相流[45],流行为[46]

16) Google Earth 虚拟地球工具,地球科学应用[47]

17) 我们提出了一个约束的实验,基于城市象征3D软件的可视化方法的实证评价和实现的一个工具,称为CodeCity[48]

18) 可视化和可视化困难 ,提供一个设计理论和指定方针描述 可视化困难被介绍来有利于理解和召回。[49]

6、数据挖掘

1) 数据挖掘算法,等级束[50]

2) 数据挖掘工具,为选择怎样的挖掘工具做出指导。[51]

3)局部仿射多维投影[52],改进传统多维投影的面向可视化交互应用的足够弹性机制。

?

参考文献

[1] 洪文学 and 王金甲, “可视化和可视化分析学,” 燕山大学学报, vol. 34, pp. 95-99, 2010.

[2] A. Kejariwal, W. Lee, O. Vallis, J. Hochenbaum, and B. Yan, “Visual Analytics Framework for Cloud Infrastructure Data,” 2013 IEEE 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2013), pp. 886-893, 2013.

[3] J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and T. Ertl, “Spatiotemporal Social Media Analytics for Abnormal Event Detection and Examination using Seasonal-Trend Decomposition,” 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), pp. 143-152, 2012.

[4] W. W. Dou, L. Yu, X. Y. Wang, Z. Q. Ma, and W. Ribarsky, “HierarchicalTopics: Visually Exploring Large Text Collections Using Topic Hierarchies,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 19, pp. 2002-2011, 2013.

[5] T. T. Zin, P. Tin, T. Toriu, and H. Hama, “New information search system in social networks application to disaster event analysis,” IAENG TRANSACTIONS ON ENGINEERING SCIENCES, pp. 411-419, 2014.

[6] L. Gabrielli, S. Rinzivillo, F. Ronzano, and D. Villatoro, “From Tweets to Semantic Trajectories: Mining Anomalous Urban Mobility Patterns,”. vol. 8313, 2014, pp. 26-35.

[7] J. Zhao, N. Cao, Z. Wen, Y. Song, Y. R. Lin, and C. Collins, “#FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 20, pp. 1773-1782, 2014.

[8] J. W. Zhang, Y. L. E, J. Ma, Y. H. Zhao, B. H. Xu, L. T. Sun, J. Y. Chen, and X. R. Yuan, “Visual Analysis of Public Utility Service Problems in a Metropolis,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 20, pp. 1843-1852, 2014.

[9] C. Turkay, P. Filzmoser and H. Hauser, “Brushing Dimensions - A Dual Visual Analysis Model for High-Dimensional Data,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2591-2599, 2011.

[10] T. Eaglin, X. Y. Wang, W. Ribarsky, and W. Tolone, “Ensemble Visual Analysis Architecture with High Mobility for Large-Scale Critical Infrastructure Simulations,” VISUALIZATION AND DATA ANALYSIS 2015, vol. 9397, 2015.

[11] Y. Gu, C. L. Wang, J. Ma, R. J. Nemiroff, and D. L. Kao, “iGraph: A Graph-Based Technique for Visual Analytics of Image and Text Collections,” VISUALIZATION AND DATA ANALYSIS 2015, vol. 9397, 2015.

[12] S. Hassan, J. Sanger and G. Pernul, “SoDA: Dynamic Visual Analytics of Big Social Data,” 2014 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), pp. 183-188, 2014.

[13] W. W. Dou, X. Y. Wang, D. Skau, W. Ribarsky, and M. X. Zhou, “LeadLine: Interactive Visual Analysis of Text Data through Event Identification and Exploration,” 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), pp. 93-102, 2012.

[14] G. D. Sun, Y. C. Wu, R. H. Liang, and S. X. Liu, “A Survey of Visual Analytics Techniques and Applications: State-of-the-Art Research and Future Challenges,” JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, vol. 28, pp. 852-867, 2013.

[15] A. Rind, T. Lammarsch, W. Aigner, B. Alsallakh, and S. Miksch, “TimeBench: A Data Model and Software Library for Visual Analytics of Time-Oriented Data,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 19, pp. 2247-2256, 2013.

[16] Z. C. Liu, B. Y. Jiang and J. Heer, “imMens: Real-time Visual Querying of Big Data,” COMPUTER GRAPHICS FORUM, vol. 32, pp. 421-430, 2013.

[17] E. Kandogan, D. Soroker, S. Rohall, P. Bak, F. van Ham, J. Lu, H. J. Ship, C. F. Wang, and J. Lai, “A Reference Web Architecture and Patterns for Real-time Visual Analytics on Large Streaming Data,” VISUALIZATION AND DATA ANALYSIS 2014, vol. 9017, 2014.

[18] H. Dandan, M. Tory, B. A. Aseniero, L. Bartram, S. Bateman, S. Carpendale, A. Tang, and R. Woodbury, “Personal Visualization and Personal Visual Analytics,” Visualization and Computer Graphics, IEEE Transactions on, vol. 21, pp. 420-433, 2015-01-01 2015.

[19] M. Steinberger, M. Waldner, M. Streit, A. Lex, and D. Schmalstieg, “Context-Preserving Visual Links,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2249-2258, 2011.

[20] R. Scheepens, N. Willems, H. van de Wetering, G. Andrienko, N. Andrienko, and J. J. van Wijk, “Composite Density Maps for Multivariate Trajectories,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2518-2527, 2011.

[21] E. E. Akyigit, T. Cengiz, O. B. Yildirim, and S. Balcisoy, “Visual exploratory tool for storyline generation,” in Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, 2014, pp. 215-216.

[22] A. Amor-Amoros, P. Federico and S. Miksch, “TimeGraph: A data management framework for visual analytics of large multivariate time-oriented networks,” in Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, 2014, pp. 217-218.

[23] N. Andrienko, G. Andrienko, G. Fuchs, and H. Stange, “Detecting and tracking dynamic clusters of spatial events,” in Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, 2014, pp. 219-220.

[24] C. Siming, G. Cong, Y. Xiaoru, Z. Jiawan, and X. L. Zhang, “MovementFinder: Visual analytics of origin-destination patterns from geo-tagged social media,” in Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on, 2014, pp. 239-240.

[25] W. W. Cui, S. X. Liu, L. Tan, C. L. Shi, Y. Q. Song, Z. Gao, X. Tong, and H. M. Qu, “TextFlow: Towards Better Understanding of Evolving Topics in Text,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2412-2421, 2011.

[26] E. Bertini, A. Tatu and D. Keim, “Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2203-2212, 2011.

[27] M. Bostock, V. Ogievetsky and J. Heer, “D-3: Data-Driven Documents,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2301-2309, 2011.

[28] C. Stein, M. Limper and A. Kuijper, “Spatial Data Structures For Accelerated 3D Visibility Computation To Enable Large Model Visualization On The Web,” WEB3D 2014, pp. 53-61, 2014.

[29] A. Agranovsky, D. Camp, K. I. Joy, and H. Childs, “Subsampling-Based Compression and Flow Visualization,” VISUALIZATION AND DATA ANALYSIS 2015, vol. 9397, 2015.

[30] G. Groger and L. Plumer, “CityGML - Interoperable semantic 3D city models,” ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, vol. 71, pp. 12-33, 2012.

[31] M. Ghoniem, M. Cornil, B. Broeksema, M. Stefas, and B. Otjacques, “Weighted Maps: treemap visualization of geolocated quantitative data,” VISUALIZATION AND DATA ANALYSIS 2015, vol. 9397, 2015.

[32] T. Kawamura, Y. Idoinura, H. Miyamura, H. Takemiya, N. Sakarnoto, and K. Koyamnada, “Remote Visualization System based on Particle Based Volume Rendering,” VISUALIZATION AND DATA ANALYSIS 2015, vol. 9397, 2015.

[33] N. Sakamoto, J. Nonaka, K. Koyamada, and S. Tanaka, “Particle-based volume rendering,” in Visualization, 2007. APVIS ‘07. 2007 6th International Asia-Pacific Symposium on, 2007, pp. 129-132.

[34] P. Z. Kolano, “Time-Synchronized Visualization of Arbitrary Data Streams,” VISUALIZATION AND DATA ANALYSIS 2015, vol. 9397, 2015.

[35] G. Tamm and P. Slusallek, “Plugin free Remote Visualization in the Browser,” VISUALIZATION AND DATA ANALYSIS 2015, vol. 9397, 2015.

[36] F. Mwalongo, M. Krone, G. Karch, M. Becher, G. Reina, and T. Ertl, “Visualization of Molecular Structures using State-of-the-Art Techniques in WebGL,” WEB3D 2014, pp. 133-141, 2014.

[37] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf, “Parallel Edge Splatting for Scalable Dynamic Graph Visualization,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2344-2353, 2011.

[38] B. Alper, N. H. Riche, G. Ramos, and M. Czerwinski, “Design Study of LineSets, a Novel Set Visualization Technique,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2259-2267, 2011.

[39] A. Lex, H. J. Schulz, M. Streit, C. Partl, and D. Schmalstieg, “VisBricks: Multiform Visualization of Large, Inhomogeneous Data,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2291-2300, 2011.

[40] V. K. Adhikarla, P. Wozniak, A. Barsi, D. Singhal, P. T. Kovacs, and T. Balogh, “FREEHAND INTERACTION WITH LARGE-SCALE 3D MAP DATA,” 2014 3DTV-CONFERENCE: THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO (3DTV-CON), 2014.

[41] J. Hullman and N. Diakopoulos, “Visualization Rhetoric: Framing Effects in Narrative Visualization,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2231-2240, 2011.

[42] H. Q. Guo, N. Y. Mao and X. R. Yuan, “WYSIWYG (What You See is What You Get) Volume Visualization,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2106-2114, 2011.

[43] O. Ersoy, C. Hurter, F. V. Paulovich, G. Cantareira, and A. Telea, “Skeleton-Based Edge Bundling for Graph Visualization,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2364-2373, 2011.

[44] M. Krstajic, E. Bertini and D. A. Keim, “CloudLines: Compact Display of Event Episodes in Multiple Time-Series,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2432-2439, 2011.

[45] T. J. Heindel, “A Review of X-Ray Flow Visualization With Applications to Multiphase Flows,” JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, vol. 133, 2011.

[46] C. Choi, J. S. Shin, D. I. Yu, and M. H. Kim, “Flow boiling behaviors in hydrophilic and hydrophobic microchannels,” EXPERIMENTAL THERMAL AND FLUID SCIENCE, vol. 35, pp. 816-824, 2011.

[47] L. Yu and P. Gong, “Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives,” INTERNATIONAL JOURNAL OF REMOTE SENSING, vol. 33, pp. 3966-3986, 2012.

[48] R. Wettel, M. Lanza and R. Robbes, “Software Systems as Cities: A Controlled Experiment,” 2011 33RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), pp. 551-560, 2011.

[49] J. Hullman, E. Adar and P. Shah, “Benefitting InfoVis with Visual Difficulties,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2213-2222, 2011.

[50] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an overview,” WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, vol. 2, pp. 86-97, 2012.

[51] R. Mikut and M. Reischl, “Data mining tools,” WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, vol. 1, pp. 431-443, 2011.

[52] P. Joia, F. V. Paulovich, D. Coimbra, J. A. Cuminato, and L. G. Nonato, “Local Affine Multidimensional Projection,” IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, vol. 17, pp. 2563-2571, 2011.

时间: 2024-10-16 09:26:50

2015年可视化研究前沿动态的相关文章

了解点OpenAI及深度学习研究前沿

前言 OpenAI是2015年底刚成立的人工智能公司,由Elon Musk领投,号称有10亿美金的投资额,由几位人工智能的顶尖好手组成.这基本上意味着一个新的DeepMind公司诞生,只不过这次OpenAI是一个组织,不属于任何一个公司. 为什么要了解OpenAI? 因为OpenAI的研究内容很大程度上代表着人工智能的研究方向,由于其非盈利性质以及地处加州硅谷这种黄金地段,未来聚集更多顶尖人才的可能性很大,成为一个和DeepMind公司抗衡的可能性非常大.OpenAI的出现将使顶级人工智能的研究

Android研究之动态创建UI界面详解

 Android的基本UI界面一般都是在xml文件中定义好,然后通过activity的setContentView来显示在界面上,这是Android UI的最简单的构建方式.其实,为了实现更加复杂和更加灵活的UI界面,往往需要动态生成UI界面,甚至根据用户的点击或者配置,动态地改变UI,本文即介绍该技巧.对事件和进程的可能安卓设备实现触摸事件的监听,跨进程 假设Android工程的一个xml文件名为activity_main.xml,定义如下: 1 2 3 4 5 6 7 8 9 10 11

【读书笔记-数据挖掘概念与技术】数据挖掘的发展趋势和研究前沿

复杂的数据类型 数据挖掘的其他方法 关于数据挖掘基础的观点: 可视和听觉数据挖掘 数据可视化 数据挖掘结构可视化 数据挖掘过程可视化 交互式可视数据挖掘 数据挖掘的应用

C#深入研究ArrayList动态数组自动扩容原理

1 void Test1() 2 { 3 ArrayList arrayList = new ArrayList(); 4 int length = 3; 5 for (int i = 0; i < length; i++) 6 { 7 arrayList.Add("TestData"); 8 } 9 Console.WriteLine("count = " + arrayList.Count); 10 Console.WriteLine("capa

ChinaVis2015 第一天会议

第二届  ChinaVis 2015 在天津举行,很幸运发现者个会议,并在导师的带领下参与本次会议. 主要要是以可视化与可视分析为背景进行讲座,以马匡六为Speaker,袁晓如,张加万等致辞开幕式. 会议首先是以马匡六的Emerging of Network Visualization为主题来讲解可视化研究前沿. 主要讲解了动态网络可视化,关于节点间关系线可视化挑战等,以及解决方法. 主会场主要讲解了天气.气象.疾病等可视化领域,  以实时可视化多字段模拟数据在地球气象科学中的运用.以及全球尺度

商学院

前 言 中南大学以“建设特色鲜明的世界一流大学”为办学目标,主动对接国家重大发展战略需求,为行业和地方社会经济发展服务,坚持将“质量提升”作为构建一流本科教育的核心任务.为进一步深化本科教育教学改革,完善本科人才培养体系,全面提升人才培养质量,学校从2014年3月开始,启动2016版本科人才培养方案的修订工作,同时组织了各教学单位对其开设课程的教学大纲进行修订.教学大纲是实施专业培养方案,实现高校培养目标及要求的教学指导文件,是组织教学过程.进行教学质量评估和实施教学管理的主要依据.制订与本科教

遇见大数据可视化:基础研究

近日星巴克与微信推出的社交礼品功能"用星说",可以说刷遍了朋友圈.无论你爱不爱喝咖啡,星巴克似乎都成为了一种文化象征.上班族青睐,小清新喜欢,基本上大家看到绿色的人鱼标志就能马上认出它来. 虽然一直也有喝咖啡的习惯,但至今不知道星巴克菜单版上列的[摩卡].[拿铁].[美式].[卡布奇诺]等等有什么区别.直到看到下列图,才很直观的了解到每个咖啡类别的区别是什么. 类似上图示,针对内容复制,难以形象表达的信息,通过图形简单清晰地向受众呈现出来,这种图称之为信息图. 信息图 信息图本身是一个

C# 动态语言特性,dynamic 关键字研究

原文:C# 动态语言特性,dynamic 关键字研究 1       动态语言简介 支持动态特性的语言现在大行其道,并且有继续增长的趋势.比如 Ruby 和 Python, 还有天王级的巨星 --- JavaScript. 现在一个程序员说自己对 JavaScript 根本没使用过,别人一定把你当成从火星回来的吧! 很多使用过 JavaScript 的程序员,刚开始对其动态特性深恶痛绝,欲除之而后快,但是一旦熟悉这个语言以后,又会发疯般的爱上她(我的野蛮女友). 以创建一个“人”为例, Java

迁移学习全面概述:从基本概念到相关研究

目录: 1.什么是迁移学习? 2.为什么现在需要迁移学习? 3.迁移学习的定义 4.迁移学习的场景 5.迁移学习的应用 从模拟中学习 适应到新的域 跨语言迁移知识 6.迁移学习的方法 使用预训练的 CNN 特征 学习域不变的表征 让表征更加相似 混淆域 7.相关的研究领域 半监督学习 更有效地使用可用的数据 提高模型的泛化能力 让模型更加稳健 多任务学习 持续学习 zero-shot 学习 8.总结 ------------------------------------------------