数据挖掘——(二)数据预处理

数据预处理

1. 数据质量的三个要素:准确性、完整性、一致性

2. 数据预处理的主要任务:

  数据清理、数据集成、数据归约、数据变换

一. 数据清理

数据清理主要:填补缺失的值,光滑噪声同时识别离群点,并纠正数据的不一致性。

通常是一个两步的迭代过程,包括偏差检测和数据变换

注意:在某些情况下,缺失值并不意味着数据有误。在理想情况下,每个属性应当有一个或多个关于控制条件的规则。这些规则可以说明是否允许空值,并且/或者说明这样的空值应当如何处理或转换。

二. 数据集成

数据集成将来自多个数据源的数据整合成一致的数据存储。语义异种性的解决、元数据、相关性分析、元组重复检测、数据冲突检测等有助于数据的顺利集成。

三、数据归约

将数据归约表示,比起原数据集小得多,但是保证原始数据的完整性。

四. 数据变换与数据离散化

时间: 2024-10-11 16:13:43

数据挖掘——(二)数据预处理的相关文章

《数据挖掘概念与技术》--第三章 数据预处理

一.数据预处理 1.数据如果能够满足其应用的要求,那么他是高质量的. 数据质量涉及许多因素:准确性.完整性.一致性.时效性.可信性.可解释性. 2.数据预处理的主要任务:数据清洗.数据集成.数据规约.数据变换. 二.数据清理:试图填充缺失值,光滑噪声.识别利群点.纠正数据中的不一致. 1.缺失值的处理: 1)忽略元组:缺少类标号时通常这么做.但是忽略的元组其他属性也不能用,即便是有用的. 2)人工填写:该方法很费事费时,数据集很大.缺失值很多时可能行不通. 3)使用一个全局常量填充缺失值:将缺失

数据挖掘笔记(三)—数据预处理

1.原始数据存在的几个问题:不一致:重复:含噪声:维度高. 2.数据预处理包含数据清洗.数据集成.数据变换和数据归约几种方法. 3.数据挖掘中使用的数据的原则 应该是从原始数据中选取合适的属性作为数据挖掘属性,这个选取过程应参考的原则是:尽可能赋予属性名和属性值明确的含义:统一多数据源的属性值编码:去除惟一属性:去除重复性:去除可忽略字段:合理选择关联字段. 4.处理空缺值的方法:忽略该记录:去掉属性:手工填写空缺值:使用默认值:使用属性平均值:使用同类样本平均值:预测最可能的值. 5.噪声数据

数据挖掘——数据预处理

数据预处理(Data Preprocess):通过采用数据清理.数据集成与变换以及数据规约等方法对数据预先进行处理,处理后的数据用于数据挖掘. 在当前社会中,由于大数据.数据源不唯一等原因使得在真实数据库存放的数据存在噪声.缺失和不一致的问题.基于数据的信息挖掘在数据不能保证的情况下,挖掘得到的信息也很难具有说服力.(地基都没夯实就去建造高楼大厦谁敢住?)为了解决实际中遇到的这些问题,数据预处理技术顺势产生.常见的几种数据预处理的方式主要有: 1.数据清洗.主要用于去除噪声数据(包括错误数据和离

数据挖掘概念与技术读书笔记(三)数据预处理

3.1 数据预处理 数据质量的三个要素:准确性.完整性和一致性. 3.1.2 数据预处理的主要任务 数据清理:填写缺失的值,光滑噪声数据,识别或删除离群点,并解决不一致性来”清理“数据. 数据集成: 数据归约: 3.2 数据清理 3.2.1 缺失值 1.忽略元组 2.人工填写缺失值 3.使用一个全局常量填充缺失值 4.使用属性的中心度量填充缺失值:中位数 5.使用与给定元组属同一类的所有样本的属性均值或中位数 6.使用最可能的值填充缺失值:回归/贝叶斯/决策树 第6种是最流行的策略 3.2.2

【读书笔记-数据挖掘概念与技术】数据预处理

数据预处理的目的:提高数据质量,数据质量的三要素:准确性.完整性.一致性. 数据预处理的任务: 数据清理 数据集成 数据规约 数据变换 数据清理--填充缺失的值.光滑噪声.识别离群点.纠正数据中的不一致 缺失值: 忽略元组 人工填写缺失值 使用一个全局常量 使用属性的中心度量 使用与给定元组属同一类的所有样本的属性均值或中位数 使用最可能的值(最流行) 噪声数据 分箱 回归 离群点分析 数据集成--合并来自多个数据存储的数据 实体识别问题 冗余和相关分析 元组重复 数据值冲突的监测与处理 数据规

[Python数据挖掘]第4章、数据预处理

数据预处理主要包括数据清洗.数据集成.数据变换和数据规约,处理过程如图所示. 一.数据清洗 1.缺失值处理:删除.插补.不处理 ## 拉格朗日插值代码(使用缺失值前后各5个未缺失的数据建模) import pandas as pd #导入数据分析库Pandas from scipy.interpolate import lagrange #导入拉格朗日插值函数 inputfile = '../data/catering_sale.xls' #销量数据路径 outputfile = '../tmp

数据预处理(完整步骤)

原文:http://dataunion.org/5009.html 一:为什么要预处理数据?(1)现实世界的数据是肮脏的(不完整,含噪声,不一致)(2)没有高质量的数据,就没有高质量的挖掘结果(高质量的决策必须依赖于高质量的数据:数据仓库需要对高质量的数据进行一致地集成)(3)原始数据中存在的问题:不一致 —— 数据内含出现不一致情况重复不完整 —— 感兴趣的属性没有含噪声 —— 数据中存在着错误.或异常(偏离期望值)的数据高维度二:数据预处理的方法(1)数据清洗 —— 去噪声和无关数据(2)数

数据预处理与特征选择

数据预处理和特征选择是数据挖掘与机器学习中关注的重要问题,坊间常说:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已.特征工程就是将原始数据转化为有用的特征,更好的表示预测模型处理的实际问题,提升对于未知数据的预测准确性.下图给出了特征工程包含的内容: 本文数据预处理与特征选择的代码均采用sklearn所提供的方法,并使用sklearn中的IRIS(鸢尾花)数据集来对特征处理功能进行说明,IRIS数据集由Fisher在1936年整理,包含4个特征:Sepal.Length(花萼长

大数据预处理技术

一.大数据预处理的几个步骤 1.数据预处理 2.数据清洗 3.数据集成 4.数据归约 5.数据变换 6.数据离散化 7.大数据预处理 二.数据预处理 现实中的数据大多是“脏”数据: ①不完整 缺少属性值或仅仅包含聚集数据 ②含噪声 包含错误或存在偏离期望的离群值 比如:salary=“-10”,明显是错误数据 ③不一致 用于商品分类的部门编码存在差异 比如age=“42”Birthday=“03/07/1997” 而我们在使用数据过程中对数据有如下要求: 一致性.准确性.完整性.时效性.可信性.