C++ 系列:多线程

转载自:http://www.cnblogs.com/codingmengmeng/p/5913068.html

多线程在编程中有相当重要的地位,我们在实际开发时或者找工作面试时总能遇到多线程的问题,对多线程的理解程度从一个侧面反映了程序员的编程水平。

  其实C++语言本身并没有提供多线程机制(当然目前C++ 11新特性中,已经可以使用std::thread来创建线程了,因为还没有系统地了解过,所以这里不提了。),但Windows系统为我们提供了相关API,我们可以使用他们来进行多线程编程。

创建线程的API函数

HANDLE CreateThread(
    LPSECURITY_ATTRIBUTES lpThreadAttributes,//SD:线程安全相关的属性,常置为NULL
    SIZE_T dwStackSize,//initialstacksize:新线程的初始化栈的大小,可设置为0
    LPTHREAD_START_ROUTINE lpStartAddress,//threadfunction:被线程执行的回调函数,也称为线程函数
    LPVOID lpParameter,//threadargument:传入线程函数的参数,不需传递参数时为NULL
    DWORD dwCreationFlags,//creationoption:控制线程创建的标志
    LPDWORD lpThreadId//threadidentifier:传出参数,用于获得线程ID,如果为NULL则不返回线程ID
    )

/*
lpThreadAttributes:指向SECURITY_ATTRIBUTES结构的指针,决定返回的句柄是否可被子进程继承,如果为NULL则表示返回的句柄不能被子进程继承。

dwStackSize:设置初始栈的大小,以字节为单位,如果为0,那么默认将使用与调用该函数的线程相同的栈空间大小。
任何情况下,Windows根据需要动态延长堆栈的大小。

lpStartAddress:指向线程函数的指针,函数名称没有限制,但是必须以下列形式声明:
DWORD WINAPI 函数名 (LPVOID lpParam) ,格式不正确将无法调用成功。

lpParameter:向线程函数传递的参数,是一个指向结构的指针,不需传递参数时,为NULL。

dwCreationFlags:控制线程创建的标志,可取值如下:
(1)CREATE_SUSPENDED(0x00000004):创建一个挂起的线程(就绪状态),直到线程被唤醒时才调用
(2)0:表示创建后立即激活。
(3)STACK_SIZE_PARAM_IS_A_RESERVATION(0x00010000):dwStackSize参数指定初始的保留堆栈的大小,
如果STACK_SIZE_PARAM_IS_A_RESERVATION标志未指定,dwStackSize将会设为系统预留的值

lpThreadId:保存新线程的id

返回值:函数成功,返回线程句柄,否则返回NULL。如果线程创建失败,可通过GetLastError函数获得错误信息。

*/

BOOL WINAPI CloseHandle(HANDLE hObject);        //关闭一个被打开的对象句柄
/*可用这个函数关闭创建的线程句柄,如果函数执行成功则返回true(非0),如果失败则返回false(0),
如果执行失败可调用GetLastError.函数获得错误信息。
*/

多线程编程实例1

 1 #include <iostream>
 2 #include <windows.h>
 3 using namespace std;
 4
 5 DWORD WINAPI Fun(LPVOID lpParamter)
 6 {
 7     for (int i = 0; i < 10; i++)
 8         cout << "A Thread Fun Display!" << endl;
 9     return 0L;
10 }
11
12 int main()
13 {
14     HANDLE hThread = CreateThread(NULL, 0, Fun, NULL, 0, NULL);
15     CloseHandle(hThread);
16     for (int i = 0; i < 10; i++)
17         cout << "Main Thread Display!" << endl;
18     return 0;
19 }

  

  运行结果:

  

  可以看到主线程(main函数)和我们自己的线程(Fun函数)是随机交替执行的。可以看到Fun函数其实只运行了六次,这是因为主线程运行完之后将所占资源都释放掉了,使得子线程还没有运行完。看来主线程执行得有点快,让它sleep一下吧。

  使用函数Sleep来暂停线程的执行。

1 VOID WINAPI Sleep(
2   __in  DWORD dwMilliseconds
3 );  

dwMilliseconds表示千分之一秒,所以 Sleep(1000); 表示暂停1秒。

多线程编程实例2

 1 #include <iostream>
 2 #include <windows.h>
 3 using namespace std;
 4
 5 DWORD WINAPI Fun(LPVOID lpParamter)
 6 {
 7     for (int i = 0; i < 10; i++)
 8     {
 9         cout << "A Thread Fun Display!" << endl;
10         Sleep(200);
11     }
12
13     return 0L;
14 }
15
16 int main()
17 {
18     HANDLE hThread = CreateThread(NULL, 0, Fun, NULL, 0, NULL);
19     CloseHandle(hThread);
20     for (int i = 0; i < 10; i++)
21     {
22         cout << "Main Thread Display!" << endl;
23         Sleep(500);
24     }
25
26     return 0;
27 }

  运行结果:

  

  程序是每当Fun函数和main函数输出内容后就会输出换行,但是我们看到的确是有的时候程序输出换行了,有的时候确没有输出换行,甚至有的时候是输出两个换行。这是怎么回事?下面我们把程序改一下看看。

多线程编程实例3

 1 #include <iostream>
 2 #include <windows.h>
 3 using namespace std;
 4
 5 DWORD WINAPI Fun(LPVOID lpParamter)
 6 {
 7     for (int i = 0; i < 10; i++)
 8     {
 9         //cout << "A Thread Fun Display!" << endl;
10         cout << "A Thread Fun Display!\n";
11         Sleep(200);
12     }
13
14     return 0L;
15 }
16
17 int main()
18 {
19     HANDLE hThread = CreateThread(NULL, 0, Fun, NULL, 0, NULL);
20     CloseHandle(hThread);
21     for (int i = 0; i < 10; i++)
22     {
23         //cout << "Main Thread Display!" << endl;
24         cout << "Main Thread Display!\n";
25         Sleep(500);
26     }
27
28     return 0;
29 }

  运行结果

  

  这时候,正如我们预期的,正确地输出了我们想要输出的内容并且格式也是正确的。在这里,我们可以把屏幕看成是一个资源,这个资源被两个线程所共用,加入当Fun函数输出了Fun Display!后,将要输出endl(也就是清空缓冲区并换行,在这里我们可以不用理解什么是缓冲区),但此时,main函数却得到了运行的机会,此时Fun函数还没有来得及输出换行(时间片用完),就把CPU让给了main函数,而这时main函数就直接在Fun Display!后输出Main Display!。

  另一种情况就是“输出两个换行”,这种情况就是比如输出Main Display!并输出endl后,时间片用完,轮到子线程占用CPU,子进程上一次时间片用完时停在了Fun Display!,下一次时间片过来时,刚好开始输出endl,此时就会“输出两个换行”。

  那么为什么我们把实例2改成实例3就可以正确的运行呢?原因在于,多个线程虽然是并发运行的,但是有一些操作(比如输出一整段内容)是必须一气呵成的,不允许打断的,所以我们看到实例2和实例3的运行结果是不一样的。它们之间的差异就是少了endl,而多了一个换行符\n

  那么,是不是实例2的代码我们就不可以让它正确的运行呢?答案当然是否定的,下面我就来讲一下怎样才能让实例2的代码可以正确运行。这涉及到多线程的同步问题。对于一个资源被多个线程共用会导致程序的混乱,我们的解决方法是只允许一个线程拥有对共享资源的独占,这里我们用互斥量(Mutex)来进行线程同步

  在使用互斥量进行线程同步时,会用到以下几个函数:

HANDLE WINAPI CreateMutex(
    LPSECURITY_ATTRIBUTES lpMutexAttributes,        //线程安全相关的属性,常置为NULL
    BOOL                  bInitialOwner,            //创建Mutex时的当前线程是否拥有Mutex的所有权
    LPCTSTR               lpName                    //Mutex的名称
);
/*
MutexAttributes:也是表示安全的结构,与CreateThread中的lpThreadAttributes功能相同,表示决定返回的句柄是否可被子进程继承,如果为NULL则表示返回的句柄不能被子进程继承。
bInitialOwner:表示创建Mutex时的当前线程是否拥有Mutex的所有权,若为TRUE则指定为当前的创建线程为Mutex对象的所有者,其它线程访问需要先ReleaseMutex
lpName:Mutex的名称
*/

DWORD WINAPI WaitForSingleObject(
    HANDLE hHandle,                             //要获取的锁的句柄
    DWORD  dwMilliseconds                           //超时间隔
);

/*
WaitForSingleObject:等待一个指定的对象(如Mutex对象),直到该对象处于非占用的状态(如Mutex对象被释放)或超出设定的时间间隔。除此之外,还有一个与它类似的函数WaitForMultipleObjects,它的作用是等待一个或所有指定的对象,直到所有的对象处于非占用的状态,或超出设定的时间间隔。 

hHandle:要等待的指定对象的句柄。

dwMilliseconds:超时的间隔,以毫秒为单位;如果dwMilliseconds为非0,则等待直到dwMilliseconds时间间隔用完或对象变为非占用的状态,如果dwMilliseconds 为INFINITE则表示无限等待,直到等待的对象处于非占用的状态。
*/

BOOL WINAPI ReleaseMutex(HANDLE hMutex);

//说明:释放所拥有的互斥量锁对象,hMutex为释放的互斥量句柄

多线程实例4

 1 #include <iostream>
 2 #include <windows.h>
 3 using namespace std;
 4
 5 HANDLE hMutex = NULL;//互斥量
 6 //线程函数
 7 DWORD WINAPI Fun(LPVOID lpParamter)
 8 {
 9     for (int i = 0; i < 10; i++)
10     {
11         //请求一个互斥量锁
12         WaitForSingleObject(hMutex, INFINITE);
13         cout << "A Thread Fun Display!" << endl;
14         Sleep(100);
15         //释放互斥量锁
16         ReleaseMutex(hMutex);
17     }
18     return 0L;//表示返回的是long型的0
19
20 }
21
22 int main()
23 {
24     //创建一个子线程
25     HANDLE hThread = CreateThread(NULL, 0, Fun, NULL, 0, NULL);
26     hMutex = CreateMutex(NULL, FALSE,"screen");
27     //关闭线程
28     CloseHandle(hThread);
29     //主线程的执行路径
30     for (int i = 0; i < 10; i++)
31     {
32         //请求获得一个互斥量锁
33         WaitForSingleObject(hMutex,INFINITE);
34         cout << "Main Thread Display!" << endl;
35         Sleep(100);
36         //释放互斥量锁
37         ReleaseMutex(hMutex);
38     }
39     return 0;
40 }

  运行结果:

  

时间: 2024-11-05 21:54:53

C++ 系列:多线程的相关文章

Java高级特性系列--多线程

多线程相关概念: 线程的5种状态: 1,新建状态(New):线程对象被创建之后,就进入了新建状态.Thread thread = new Thread(); 2,  就绪状态(Runnable):可执行状态,线程对象被创建后,其他线程调用了该对象的start()方法,该线程就启动了.处于就绪状态,随时可能被CPU调度执行. 3,运行状态(Running):线程获取到CPU正在执行.线程只能从就绪状态转为运行状态,不能从其他状态进入运行状态. 4,阻塞状态(Blocked):阻塞状态是线程因为某种

C#基础系列——多线程的常见用法详解

前言:前面几节分别介绍了下C#基础技术中的反射.特性.泛型.序列化.扩展方法.Linq to Xml等,这篇跟着来介绍下C#的另一基础技术的使用.最近项目有点紧张,所以准备也不是特别充分.此篇就主要从博主使用过的几种多线程的用法从应用层面大概介绍下.文中观点都是博主个人的理解,如果有不对的地方望大家指正~~ 1.多线程:使用多个处理句柄同时对多个任务进行控制处理的一种技术.据博主的理解,多线程就是该应用的主线程任命其他多个线程去协助它完成需要的功能,并且主线程和协助线程是完全独立进行的.不知道这

C#基础系列——多线程的常见用法

前言:前面几节分别介绍了下C#基础技术中的反射.特性.泛型.序列化.扩展方法.Linq to Xml等,这篇跟着来介绍下C#的另一基础技术的使用.最近项目有点紧张,所以准备也不是特别充分.此篇就主要从博主使用过的几种多线程的用法从应用层面大概介绍下.文中观点都是博主个人的理解,如果有不对的地方望大家指正~~ 1.多线程:使用多个处理句柄同时对多个任务进行控制处理的一种技术.据博主的理解,多线程就是该应用的主线程任命其他多个线程去协助它完成需要的功能,并且主线程和协助线程是完全独立进行的.不知道这

C#基础系列——再也不用担心面试官问我“事件”了

前言:作为.Net攻城狮,你面试过程中是否遇到过这样的问题呢:什么是事件?事件和委托的区别?既然事件作为一种特殊的委托,那么它的优势如何体现?诸如此类...你是否也曾经被问到过?你又是否都答出来了呢?上两篇由浅及深介绍了下委托的用法,这篇还是来说说事件.希望通过这篇的介绍,博友能有个系统的认识,至少应付面试没问题了吧.不信?瞧瞧去~~ C#基础系列目录: C#基础系列——Linq to Xml读写xml C#基础系列——扩展方法的使用 C#基础系列——序列化效率比拼 C#基础系列——反射笔记 C

C#基础系列——一场风花雪月的邂逅:接口和抽象类

前言:最近一个认识的朋友准备转行做编程,看他自己边看视频边学习,挺有干劲的.那天他问我接口和抽象类这两个东西,他说,既然它们如此相像, 我用抽象类就能解决的问题,又整个接口出来干嘛,这不是误导初学者吗.博主呵呵一笑,回想当初的自己,不也有此种疑惑么...今天打算针对他的问题,结合一个实际的使用场景来说明下抽象类和接口的异同,到底哪些情况需要用接口?又有哪些情况需要用抽象类呢? C#基础系列目录: C#基础系列——Linq to Xml读写xml C#基础系列——扩展方法的使用 C#基础系列——序

C#基础系列——委托实现简单设计模式

前言:上一篇介绍了下多线程的相关知识:C#基础系列--多线程的常见用法详解,里面就提到了委托变量.这篇简单介绍下委托的使用.当然啦,园子里面很多介绍委托的文章都会说道:委托和事件的概念就像一道坎,过了这个槛的人,觉得真是太容易了,而没有过去的人每次见到委托和事件就觉得心里发慌.确实这东西就像最开始学C语言的指针一样,令人有一种很纠结的感觉,总觉得要调用一个方法直接调用就行了,为啥非要定义一个委托时执行这个方法呢.其实在C#里面很多的技术都是为了重用和简化代码而生,委托也不例外,很多使用C#多态去

C#基础系列——异步编程初探:async和await

前言:前面有篇从应用层面上面介绍了下多线程的几种用法,有博友就说到了async, await等新语法.确实,没有异步的多线程是单调的.乏味的,async和await是出现在C#5.0之后,它的出现给了异步并行变成带来了很大的方便.异步编程涉及到的东西还是比较多,本篇还是先介绍下async和await的原理及简单实现. C#基础系列目录: C#基础系列——Linq to Xml读写xml C#基础系列——扩展方法的使用 C#基础系列——序列化效率比拼 C#基础系列——反射笔记 C#基础系列——At

Async、Await

Async.Await:net4.x新增的异步编程方式: 目的:为了简化异步程序编写 Async方式, 使用Async标记Async1为异步方法, 用Await标记GetRequestStreamAsync表示方法内需要耗时的操作. 主线程碰到await时会立即返回,继续以非阻塞形式执行主线程下面的逻辑. 当await耗时操作完成时,继续执行Async1下面的逻辑 详解:复杂 C# 5.0 Async函数的提示和技巧:复杂 谈谈异步编程async await:简单 C#基础系列--多线程的常见用

Java多线程系列--“JUC锁”11之 Semaphore信号量的原理和示例

概要 本章,我们对JUC包中的信号量Semaphore进行学习.内容包括:Semaphore简介Semaphore数据结构Semaphore源码分析(基于JDK1.7.0_40)Semaphore示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3534050.html Semaphore简介 Semaphore是一个计数信号量,它的本质是一个"共享锁". 信号量维护了一个信号量许可集.线程可以通过调用acquire()来获取信号量的许可

Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock

ReentrantLock介绍 ReentrantLock是一个可重入的互斥锁,又被称为"独占锁". 顾名思义,ReentrantLock锁在同一个时间点只能被一个线程锁持有:而可重入的意思是,ReentrantLock锁,可以被单个线程多次获取.ReentrantLock分为"公平锁"和"非公平锁".它们的区别体现在获取锁的机制上是否公平."锁"是为了保护竞争资源,防止多个线程同时操作线程而出错,ReentrantLock在