数据结构之---C语言实现拓扑排序AOV图

//有向图的拓扑排序
//杨鑫
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX_NAME 3
#define MAX_VERTEX_NUM 20
typedef int InfoType;					//存放网的权值
typedef char VertexType[MAX_NAME];		//字符串类型
typedef enum{DG, DN, AG, AN}GraphKind;	//{有向图,有向网,无向图,无向网}
//图的邻接表存储
typedef struct ArcNode
{
	int adjvex;							//该弧所指向的顶点的位置
	struct ArcNode *nextarc;			//指向吓一条的指针
	InfoType *info;						//网的权值指针
}ArcNode;

typedef struct VNode
{
	VertexType data;					//顶点信息
	ArcNode *firstarc;					//第一个表结点的地址,指向第一条依附该顶点的弧的指针
}VNode, AdjList[MAX_VERTEX_NUM];		//头结点

typedef struct
{
		AdjList vertices;
		int vexnum, arcnum;				//图的当前顶点数和弧数
		int kind;						//图的种类标志
}ALGraph;

//若G中存在顶点u,则返回该顶点在图中的位置。都则返回-1
int LocateVex(ALGraph G, VertexType u)
{
	int i;
	for(i = 0; i < G.vexnum; ++i)
	{
		if(strcmp(u, G.vertices[i].data) == 0)
				return i;
		return -1;
	}
}

//採用邻接表存储结构,构造没有相关信息的图G(用一个函数构造4种图)
int CreateGraph(ALGraph *G)
{
	int i, j, k;
	int w;							//权值
	VertexType va, vb;
	ArcNode *p;
	printf("请输入图的类型(有向图:0,有向网:1。无向图:2,无向网:3):");
	scanf("%d", &(*G).kind);
	printf("请输入图的顶点数和边数:(以空格间隔): \n");
	scanf("%d%d", &(*G).vexnum, &(*G).arcnum);
	printf("请输入%d个顶点的值(小于%d个字符):\n", (*G).vexnum, MAX_NAME);
	for(i = 0; i < (*G).vexnum; ++i)                //构造顶点向量
	{
		scanf("%s", (*G).vertices[i].data);
		(*G).vertices[i].firstarc = NULL;
	}
	if((*G).kind == 1 || (*G).kind == 3)		//网
	{
		printf("请顺序输入每条弧(边)的权值,弧尾和弧头(以空格作为间隔):\n");
	}
	else											//图
	{
		printf("请顺序输入每条弧(边)的弧尾和弧头(以空格作为间隔):\n");
	}
	for(k = 0; k < (*G).arcnum; ++k)
	{
		if((*G).kind == 1 || (*G).kind == 3)
				scanf("%d%s%s", &w, va, vb);
		else
				scanf("%s%s", va, vb);
		i = LocateVex(*G, va);					//弧尾
		j = LocateVex(*G, vb);					//弧头
		p = (ArcNode*)malloc(sizeof(ArcNode));
		p->adjvex = j;
		if((*G).kind == 1 || (*G).kind == 3)
		{
			p->info = (int *)malloc(sizeof(int));
			*(p->info) = w;
		}
		else
		{
			p->info = NULL;
		}
		p->nextarc = (*G).vertices[i].firstarc;                 //插在表头
		(*G).vertices[i].firstarc = p;
		if((*G).kind >= 2)										//无向图或网。产生第二个表结点
		{
			p = (ArcNode*)malloc(sizeof(ArcNode));
			p->adjvex = i;
			if((*G).kind == 3)
			{
				p->info = (int*)malloc(sizeof(int));
				*(p->info) = w;
			}
			else
			{
				p->info = NULL;
			}
			p->nextarc = (*G).vertices[j].firstarc;               //插在表头
			(*G).vertices[j].firstarc = p;
		}
	}
	return 1;
}

//输出图的邻接表G
void Display(ALGraph G)
{
	int i;
	ArcNode *p;
	switch(G.kind)
	{
		case DG:
				printf("有向图\n");
				break;
		case DN:
				printf("有向网\n");
				break;
		case AG:
				printf("无向图\n");
				break;
		case AN:
				printf("无向网\n");
	}
	printf("%d 个顶点: \n", G.vexnum);
	for(i = 0; i < G.vexnum; ++i)
	{
		printf("%s ", G.vertices[i].data);
	}
	printf("\n%d条弧(边):\n", G.arcnum);
	for(i = 0; i < G.vexnum; i++)
	{
		p = G.vertices[i].firstarc;
		while(p)
		{
			if(G.kind <= 1)
			{
				printf("%s->%s", G.vertices[i].data, G.vertices[p->adjvex].data);
				if(G.kind == DN)
						printf(":%d ", *(p->info));
			}
			else
			{
				if(i < p->adjvex)
				{
					printf("%s--%s", G.vertices[i].data, G.vertices[p->adjvex].data);
					if(G.kind == AN)
						printf(":%d ", *(p->info));
				}
			}
			p = p->nextarc;

		}
		printf("\n");
	}
}

//求顶点的入度
void FindInDegree(ALGraph G, int indegree[])
{
	int i;
	ArcNode *p;
	//赋初值
	for(i = 0; i < G.vexnum; i++)
	{
		indegree[i] = 0;
	}
	for(i = 0; i < G.vexnum; i++)
	{
		p = G.vertices[i].firstarc;
		while(p)
		{
			indegree[p->adjvex]++;
			p = p->nextarc;
		}

	}

}

//栈类型
typedef int SElemType;
#define STACK_INIT_SIZE 10										//存储空间初始分配量
#define STACKINCREMENT 2										//存储空间分配增量

//栈的顺序存储结构表示
typedef struct SqStack
{
	SElemType *base;						//基地址
	SElemType *top;							//栈顶指针
	int stacksize;							//当前已经分配的存储空间
}SqStack;                                              

//构造一个空栈
int InitStack(SqStack *S)
{
	//为栈底分分配一个指定大小的存储空间
	(*S).base = (SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType));
	if(!(*S).base)
			exit(0);
	(*S).top = (*S).base;					//栈底与栈顶指针同样
	(*S).stacksize = STACK_INIT_SIZE;
	return 1;
}

//若栈S为空栈(栈底指针和栈顶指针同样), 则返回1。否则返回0
int StackEmpty(SqStack S)
{
	if(S.top == S.base)
			return 1;
	else
			return 0;
}

//插入元素e为新的栈顶元素
int Push(SqStack *S, SElemType e)
{
	if((*S).top - (*S).base >= (*S).stacksize)
	{
		(*S).base = (SElemType *)realloc((*S).base,((*S).stacksize + STACKINCREMENT)*sizeof(SElemType));
		if(!(*S).base)
				exit(0);
		(*S).top = (*S).base + (*S).stacksize;
	   	(*S).stacksize += STACKINCREMENT;
	}
	*((*S).top)++= e;
	return 1;
}

//若栈不为空,则删除S栈顶元素用e返回其值。并返回1。否则返回0
int Pop(SqStack *S, SElemType *e)
{
	if((*S).top == (*S).base)
	{
		return 0;
	}
	*e = *--(*S).top;
	return 1;
}

//有向图的G採用邻接表存储结构。若G无回路,则输出G的顶点的一个拓扑结构
int TopologicalSort(ALGraph G)
{
	int i, k, count, indegree[MAX_VERTEX_NUM];
	SqStack S;
	ArcNode *p;
	FindInDegree(G, indegree);
	InitStack(&S);
	for(i = 0; i < G.vexnum; ++i)
	{
		if(!indegree[i])
				Push(&S, i);
		count = 0;
		//栈不空
		while(!StackEmpty(S))
		{
			Pop(&S, &i);
			printf("%s", G.vertices[i].data);			//输出i号顶点并计数
			++count;
			//对i号顶点的每一个邻接点的入度减1
			for(p == G.vertices[i].firstarc; p; p = p->nextarc)
			{
				k = p->adjvex;
				if(!(--indegree[k]))			//若入度减为0,则入栈
						Push(&S, k);
			}
		}
		if(count < G.vexnum)
		{
				printf("此有向图有回路\n");
				return 0;
		}
		else
		{
			printf("为一个拓扑序列!!\n");
		}
	}
}

int main()
{
	ALGraph f;
	printf("请选择有向图\n");
	CreateGraph(&f);
	Display(f);
	TopologicalSort(f);
	return 0;
}

结果:

时间: 2024-11-03 12:32:44

数据结构之---C语言实现拓扑排序AOV图的相关文章

ACM/ICPC 之 数据结构-邻接表+DP+队列+拓扑排序(TshingHua OJ-旅行商TSP)

做这道题感觉异常激动,因为在下第一次接触拓扑排序啊= =,而且看了看解释,猛然发现此题可以用DP优化,然后一次A掉所有样例,整个人激动坏了,哇咔咔咔咔咔咔咔~ 咔咔~哎呀,笑岔了- -|| 旅行商(TSP) Description Shrek is a postman working in the mountain, whose routine work is sending mail to n villages. Unfortunately, road between villages is

数据结构和算法17 之拓扑排序

本文为博主原创文章,转载请注明出处:http://blog.csdn.net/eson_15/article/details/51194219 这一节我们学习一个新的排序算法,准确的来说,应该叫"有向图的拓扑排序".所谓有向图,就是A->B,但是B不能到A.与无向图的区别是,它的边在邻接矩阵里只有一项(友情提示:如果对图这种数据结构部不太了解的话,可以先看一下这篇博文:数据结构和算法之 无向图.因为拓扑排序是基于图这种数据结构的). 有向图的邻接矩阵如下表所示: A B C A

数据结构之---C语言实现希尔排序

//希尔排序Shell Sort //杨鑫 #include <stdio.h> #include <stdlib.h> void ShellSort(int a[], int length) { int increment; int i,j; int temp; for(increment = length/2; increment > 0; increment /= 2) //用来控制步长,最后递减到1 { // i从第step开始排列,应为插入排序的第一个元素 // 可

hdu 2647 Reward(拓扑排序+反图)

题目链接:https://vjudge.net/contest/218427#problem/C 题目大意: 老板要给很多员工发奖金, 但是部分员工有个虚伪心态, 认为自己的奖金必须比某些人高才心理平衡: 但是老板很人道, 想满足所有人的要求, 并且很吝啬,想画的钱最少 输入若干个关系 a b a c c b 意味着a 的工资必须比b的工资高 同时a 的工资比c高: c的工资比b高 当出现环的时候输出-1 #include<iostream> #include<cstring> #

java实现AOV图的拓扑排序

拓扑排序作为图的应用,了解拓扑排序必须首先了解AOV图. AOV网表示一个有向图中顶点,用弧表示顶点之间的优先关系.如下图所示,在AOV网中,若从顶点vi到顶点vj之间存在一条有向路径,则称顶点vi为顶点vj的前驱,顶点vj为顶点vi的后继.注意,AOV图不能有回路,否则会将序列陷入死循环,称为死锁. 进行拓扑排序,一般步骤如下: <1>在AOV网中选择一个入度为0的顶点 <2>在AOV网中删除此顶点及其相连的有向边 <3>重复步骤<1>和<2>

有向无环图的应用—AOV网 和 拓扑排序

有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林. 在工程计划和管理方面的应用 除最简单的情况之外,几乎所有的工程都可分为若干个称作“活动”的子工程,并且这些子工程之间通常受着一定条件的约束,例如:其中某些子工程必须在另一些子工 程完成之后才能开始.对整个工程和系统,人们关心的是两方面的问题: 一是工程能否顺利进行,即工程流程是否“合理”: 二是

数据结构--图(下)--拓扑排序

拓扑排序 思维导图也是图的一种 拓扑序:如果图中从V到W有一条有向路径,则V一定排在W之前.满足此条件的顶点排序成为一个拓扑序.  V->W 获得一个拓扑序的过程就是拓扑排序 AOV如果有合理的拓扑序,则必定是有向无环图(Directed Acyclic Graph,简称DAG). 第一排没有预修课程的课.然后抹掉顶点和边, 每一次输出哪个顶点呢,没有前驱顶点,就输出(入度为0的顶点). 最后的拓扑序就产生了 DAG有向无环图. 拓扑排序的应用 AOE(Activity On Edge)网络  

拓扑排序的原理及事实上现

本文将从下面几个方面介绍拓扑排序: 拓扑排序的定义和前置条件 和离散数学中偏序/全序概念的联系 典型实现算法 Kahn算法 基于DFS的算法 解的唯一性问题 实际样例 取材自下面材料: http://en.wikipedia.org/wiki/Topological_sorting http://en.wikipedia.org/wiki/Hamiltonian_path 定义和前置条件: 定义:将有向图中的顶点以线性方式进行排序.即对于不论什么连接自顶点u到顶点v的有向边uv,在最后的排序结果

拓扑排序的原理及其实现

本文将从以下几个方面介绍拓扑排序: 拓扑排序的定义和前置条件 和离散数学中偏序/全序概念的联系 典型实现算法 Kahn算法 基于DFS的算法 解的唯一性问题 实际例子 取材自以下材料: http://en.wikipedia.org/wiki/Topological_sorting http://en.wikipedia.org/wiki/Hamiltonian_path 定义和前置条件: 定义:将有向图中的顶点以线性方式进行排序.即对于任何连接自顶点u到顶点v的有向边uv,在最后的排序结果中,