Caffe学习和总结1

为什么要学习Caffe呢?因为通过Caffe可以综合性的学习Deep Learning,CUDA,Spark(CaffeOnSpark),cuDNN,OpenBLAS,MKL,C++,Python,Linux等知识。安装Caffe之前主要是安装CUDA,BLAS等,关于cuDNN和Python是可以选择的。Caffe详细的安装过程参考[1][2]。

Caffe(Convolutional Architecture for Fast Feature Embedding)是什么呢?简单来说Caffe主要是一个关于CNN的深度学习框架,可以用于模式识别,图形图像,机器视觉等应用。

1. Caffe的目录结构

参考文献:

[1] Setting up a Deep Learning Machine from Scratch (Software):https://github.com/saiprashanths/dl-setup#caffe

[2] Caffe:http://caffe.berkeleyvision.org/

[3] Caffe:https://github.com/BVLC/caffe

[4] 知乎Caffe:http://www.zhihu.com/search?type=content&q=Caffe

[5] Caffe —— Deep learning in Practice:http://blog.csdn.net/abcjennifer/article/details/46424949

[6] Caffe深度学习框架上手教程:http://www.open-open.com/lib/view/open1421995285109.html

[7] Caffe Demos:http://demo.caffe.berkeleyvision.org/

[8] Yangqing Jia (贾扬清):http://daggerfs.com/

时间: 2024-10-06 03:05:45

Caffe学习和总结1的相关文章

CAFFE学习笔记(四)将自己的jpg数据转成lmdb格式

1 引言 1-1 以example_mnist为例,如何加载属于自己的测试集? 首先抛出一个问题:在example_mnist这个例子中,测试集是人家给好了的.那么如果我们想自己试着手写几个数字然后验证识别效果又当如何呢? 观察CAFFE_ROOT/examples/mnist/下的lenet_train_test.prototxt文件,发现里面既给出了训练集的路径,又给出了测试集的路径.因此答案很显然了,我们可以把自己的测试集做成leveldb(或lmdb)格式的,然后在lenet_train

Caffe学习系列——工具篇:神经网络模型结构可视化

Caffe学习系列--工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py 本文将就这两种方法加以介绍 1. Netscope:支持Caffe的神经网络结构在线可视化工具 Netscope是个支持prototxt格式描述的神经网络结构的在线可视工具,网址:  http://ethereon.github.io/netscope/quickstart.html  它可以用来可

Caffe学习笔记3

Caffe学习笔记3 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html 这篇博客主要是用imagenet的一个网络模型来对自己的图片进行训练和测试 图片下载网

Caffe学习笔记

Caffe学习笔记 Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and by community contributors.Yangqing Jia created the project during his PhD at

转 Caffe学习系列(3):视觉层(Vision Layers)及参数

所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率

caffe学习(1):多平台下安装配置caffe

caffe学习(1):多平台下安装配置caffe 提到deep learning, caffe的大名自然是如雷贯耳,当然,除了caffe之外,还有很多其他的框架,如torch,mxnet...但是,就我自己这一个月的实验以及师兄的结论都是,caffe得出的实验performance要高于别的框架,可能是C++的威力吧~笑 OK,接下来准备在这个系列分享我使用和学习caffe的一些经验,首先自然是框架的配置了.这里我们分享一下在windows10和ubuntu14.04虚拟机下的Caffe配置(:

caffe 学习

caffe学习官网 notebook example 第一个样例:给一张图片,然后调用已经训练好的caffemodel(其实里边存的是网络的参数),通过深度学习的网络来给这张图片分类

Caffe 学习笔记目录

版权声明:本文为hanahimi原创及转载文章,转载请附上链接…… 一点点更新中... 目录: 安装.配置与测试 buildtools学习 Tutorial 学习 pyCaffe 学习 Caffe源码学习 相关实例 安装.配置与测试 在windows上安装caffe (GPU) 使用caffe-windows 生成数据文件 运行caffe-windows 的demo 配置caffe + cuDNN buildtools学习 Caffe 学习:convert_imageset Caffe 学习:c

CAFFE学习笔记(五)用caffe跑自己的jpg数据

1 收集自己的数据 1-1 我的训练集与测试集的来源:表情包 由于网上一幅一幅图片下载非常麻烦,所以我干脆下载了两个eif表情包.同一个表情包里的图像都有很强的相似性,因此可以当成一类图像来使用.下载个eif解压包可以把eif文件解压成gif和jpg格式的文件,然后删除gif文件,只留下jpg格式的文件,这些图就是我的训练集与测试集了. 1-2 使用rename批量重命名图像 (1)对于一个存放了图像src.jpg的文件夹ROOT,在ROOT中新建一个test.txt文件,在里面写下"renam

Caffe 学习系列

学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一个测试程序 Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn Caffe学习系列(2):数据层及参数 Caffe学习系列(3):视觉层(Vision Layers)及参数 Caffe学习系列(4):激活层(Activiation Layers)及参数