【算法题目】约瑟夫环问题

  题目来源:《剑指offer》面试题45

  题目:0,1,。。。,n-1这n个数字排成一个圆圈,从数字0开始每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。

  

解法一:经典解法,用环形链表模拟圆圈。这种方法每删除一个数字需要m步运算,总共有n个数字,因此总的时间复杂度是O(mn).同时这种思路还需要一个辅助链表来模拟圆圈,其空间复杂度是O(n)。

int LastRemaining(unsigned int n, unsigned int m) {
    if (n < 1 || m < 1)
        return -1;

    list<int> nums;
    for (int i = 0; i < n; i++)
        nums.push_back(i);

    list<int>::iterator iter = nums.begin();
    for (int i = 0; i < n - 1; i++) {
        for (int j = 1; j < m - 1; ++j) {
            iter++;
            if (iter == nums.end())
                iter = nums.begin();
        }
        list<int>::iterator next = ++iter;
            --iter;
        if (next == nums.end())
            next = nums.begin();
        nums.erase(iter);
        iter = next;
    }

    return *iter;
}

解法二:

  我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2并且从k开始报0。
现在我们把他们的编号做一下转换:

k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x‘=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

  

#include <stdio.h>
int main()
{
    int n, m, i, s = 0;
    printf ("N M = ");
    scanf("%d%d", &n, &m);
    for (i = 2; i <= n; i++)
    {
        s = (s + m) % i;
    }
    printf ("\nThe winner is %d\n", s+1);
}

参考资料:

  1. http://www.cnblogs.com/EricYang/archive/2009/09/04/1560478.html

时间: 2024-10-14 15:20:50

【算法题目】约瑟夫环问题的相关文章

算法:约瑟夫环问题

算法:约瑟夫环问题 [写在前面] 由于本人天生驽钝,所写代码和描述可能不堪入目,高手请移步.但是我一直在努力记录一下有用的知识点,给自己给朋友用,只是希望对大家有帮助. [问题描述] 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从第一个人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,求最后一个出圈的人的标号. [代码] void JOSEF(int n,int m) //:n个人

【算法】约瑟夫环 C++源代码

#include<iostream> using namespace std; int main() { int a=17,b=3,winner=0;//总人数a,数到b的倍数离开,最后的人winner for(int i=2;i<=a;i++) winner=(winner+b)%i; cout<<"Winner:"<<winner+1<<endl; } 我们考虑如下过程 1     2     3     4     5    

约瑟夫环问题,一道经典的数据结构题目

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数.求胜利者的编号. 一般我们采用一个循环队列来模拟约瑟夫环的求解过程,但是如果n比较大的时候,采用模拟的方式求解,需要大量的时间来模拟退出的过程,而且由于需要占用大量的内存空间来模拟队列中的n个人,并不是一个很好的解法. 在大部分情况下,我们仅仅需要知道最后那个人的编号,而不是要来模拟一个这样的过程,在这种情况下,可以考虑是否存在着一种数学公式能够直接求出最后那个人的编号. 我们知道第一个人(编号

基本算法——约瑟夫环问题

关于约瑟夫环问题,我们可以从两种思路去实现,一种是用数组,另一种是采用链表. 用数组方法实现代码: 1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <string.h> 4 #define M 8 5 int find(int *arr, int len); 6 int main(int argc, char* argv[]) 7 { 8 int size = atoi(argv[1]); 9 int* arr

趣味算法--约瑟夫环问题

问题描述 已知n个人(以编号1,2,3,...,n分别表示)围坐在一张圆桌上.指定编号为k的人开始从1报数,数到m的那个人出列:出列那个人的下一位又从1开始报数,数到m的那个人出列:以此规则重复下去,直到圆桌上的人全部出列. 分析解决 解决方法主要有逻辑分析.数学分析法. 逻辑分析:就是按照游戏规则一个个报数,报到m的人出局,结构层次简单清晰明了.这种方式实现主要采用顺序表实现 数学分析:采用数学方式归纳统计分析出每次出局人的规律,直接得出每次出局的人,然后以代码实现.这种方法需要较强的数学分析

约瑟夫环的C语言数组实现

约瑟夫环问题的具体描述是:设有编号为1,2,--,n的n个(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,才从他的下一个人起重新报数,报到m时停止报数,报m的出圈,--,如此下去,知道剩余1个人为止.当任意给定n和m后,设计算法求n个人出圈的次序. 一开始看到这这个题目就是觉得这是一个环形的,想到了用链表和用指针,然后看题目的要求是使用数组实现.就先暂时放弃用链表的办法,用数组实现之后再用链表来实现. 一开始的思路是: 1.建立一个长度为n的数组. 2.取出位置编号

经典算法之约瑟夫问题

1 /************************************************************************************** 2 * Function : 约瑟夫问题 3 * Create Date : 2014/04/20 4 * Author : NTSK13 5 * Email : [email protected] 6 * Copyright : 欢迎大家和我一起交流学习,转载请保持源文件的完整性. 7 任何单位和个人不经本人允许不得

约瑟夫环问题小结

一 问题描述 约瑟夫环问题的基本描述如下:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为1的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,要求找到最后一个出列的人或者模拟这个过程. 二 问题解法 在解决这个问题之前,首先我们对人物进行虚拟编号,即相当于从0开始把人物重新进行编号,即用0,1,2,3,...n-1来表示人物的编号,最后返回的编号结果加上1,就是原问题的解(为什么这么做呢,下文有解释).而关于该问题的解

经典例题|约瑟夫环多方法解决

本文章将用循环链表.数组.递归以及循环方法对约瑟夫环问题进行讲解.其中链表法和数组法会对过程进行模拟,递归和循环将对约瑟夫环问题进行数学剖析. 问题描述 n个人围成圈,依次编号为1.2.3.....n,从1号开始依次报数,当报到m时,报m的人退出,下一个人重新从1报起,当报到m时,报m的人退出,如此循环下去,问最后剩下的那个人的编号是多少? 链表法 建立一个循环链表,节点的数值部分存储整数1至n,将尾部节点链接到第一个节点,每次遍历m-2步,把第m-1个节的指针域指向的节点数据打印出来,然后将m