查找算法(Java实现)

1、二分查找算法

package other;

public class BinarySearch {
    /*
     * 循环实现二分查找算法arr 已排好序的数组x 需要查找的数-1 无法查到数据
     */
    public static int binarySearch(int[] arr, int x) {
        int low = 0;
        int high = arr.length-1;
        while(low <= high) {
            int middle = (low + high)/2;
            if(x == arr[middle]) {
                return middle;
            }else if(x <arr[middle]) {
                high = middle - 1;
            }else {
                low = middle + 1;
            }
        }
        return -1;
    }
    //递归实现二分查找
    public static int binarySearch(int[] dataset,int data,int beginIndex,int endIndex){
           int midIndex = (beginIndex+endIndex)/2;
           if(data <dataset[beginIndex]||data>dataset[endIndex]||beginIndex>endIndex){
               return -1;
           }
           if(data <dataset[midIndex]){
               return binarySearch(dataset,data,beginIndex,midIndex-1);
           }else if(data>dataset[midIndex]){
               return binarySearch(dataset,data,midIndex+1,endIndex);
           }else {
               return midIndex;
           }
       }   

    public static void main(String[] args) {
        int[] arr = { 6, 12, 33, 87, 90, 97, 108, 561 };
        System.out.println("循环查找:" + (binarySearch(arr, 87) + 1));
        System.out.println("递归查找"+binarySearch(arr,3,87,arr.length-1));
    }
}

时间复杂度

比如:总共有n个元素,每次查找的区间大小就是n,n/2,n/4,…,n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数。
由于n/2^k取整后>=1,即令n/2^k=1,
可得k=log2n,(是以2为底,n的对数),所以时间复杂度可以表示O()=O(logn)

时间: 2024-10-05 10:30:42

查找算法(Java实现)的相关文章

二分查找算法java实现

今天看了一下JDK里面的二分法是实现,觉得有点小问题.二分法的实现有多种今天就给大家分享两种.一种是递归方式的,一种是非递归方式的.先来看看一些基础的东西. 1.算法概念. 二分查找算法也称为折半搜索.二分搜索,是一种在有序数组中查找某一特定元素的搜索算法.请注意这种算法是建立在有序数组基础上的. 2.算法思想. ①搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束: ②如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间

二分查找算法java

二分查找又称折半查找,它是一种效率较高的查找方法. 折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则将待查序列缩小为左半部分,否则为右半部分.通过一次比较,将查找区间缩小一半. 折半查找是一种高效的查找方法.它可以明显减少比较次数,提高查找效率.但是,折半查找的先决条件是查找表中的数据元素必须有序. 折半查找法的优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除

Java学习 (七)、数组,查找算法,二分查找法,冒泡排序,选择排序,插入排序

一.常用数组查找算法 工作原理:它又称为顺序查找,在一列给定的值中进行搜索,从一端的开始逐一检查每个元素,知道找到所需元素的过程. 例1:查找指定的数在数组中出现的位置,找到返回下标,找不到返回-1 1 import java.util.Scanner; 2 public class LinearSearch{ 3 public static void main(String []argas) 4 { 5 int [] array={10,100,90,65,80,92}; 6 System.o

Java学习之二分查找算法

好久没写算法了.只记得递归方法..结果测试下爆栈了. 思路就是取范围的中间点,判断是不是要找的值,是就输出,不是就与范围的两个临界值比较大小,不断更新临界值直到找到为止,给定的集合一定是有序的. 自己写的代码: 1 package com.gh; 2 3 import java.util.Arrays; 4 /** 5 * 二分查找算法实现 6 * @author ganhang 7 * 8 */ 9 public class Search { 10 public static void mai

JDK自带的二分查找算法和自己写的普通二分查找算法的比较(java二分查找源代码)

一.描述 解析和比较JDK自带的二分查找算法和自己写的普通二分查找算法,使用二进制位无符号右移来代替除2运算,并使用产生随机数的方法产生一定范围的随机数数组,调用Arrays类的sort()静态方法,对int类型数组进行排序. Math.random()的用法:会产生一个[0,1)之间的随机数(注意能取到0,不能取到1),这个随机数的是double类型,要想返回指定范围的随机数如[m,n]之间的整数的公式:(int)(Math.random()*(m-n+1)+m) 二.源代码 <span st

Java 查找算法

这个问题有几个点要先确认 必须是有序,如果无序的话就只能全遍历了 查找算法跟数据结构相关,不同的数据结构适用于不同的查找算法 查找算法与磁盘I/O有一定的关系,比如数据库在索引排序的时候,如果每次都从磁盘读取一个节点然后进行判断 数组 如果知道下标的话就方便了,查找的复杂度为1. 如果是针对值的查找,那么顺序遍历是O(n), 二分查找 使用二分查找的话可以减少时间复杂度为:O(logn) /** * 二分查找又称折半查找,它是一种效率较高的查找方法. [二分查找要求]:1.必须采用顺序存储结构

Java中常用的查找算法——顺序查找和二分查找

Java中常用的查找算法——顺序查找和二分查找 一.顺序查找: a) 原理:顺序查找就是按顺序从头到尾依次往下查找,找到数据,则提前结束查找,找不到便一直查找下去,直到数据最后一位. b) 图例说明: 原始数据:int[] a={4,6,2,8,1,9,0,3}; 要查找数字:8 代码演示: import java.util.Scanner; /* * 顺序查找 */ public class SequelSearch { public static void main(String[] arg

Java中Map相关的快速查找算法与唯一性(转载)

原文地址:http://blog.csdn.net/chuyuqing/article/details/19629229 在对<Set和hashCode()>的一篇原创文章写完后,由于对自己的一些论断产生了模糊和怀疑,因此又对Set进行了一些研究,形成本篇. 在Set的使用场景中,我们不外乎看中了她存储数据的唯一性,即不能存储重复值,这在某些应用场合下是很必要的一个特性.那么从更深一层来考虑,Set究竟如何使数据不重复的呢?从另一个层面来考虑,她又如何确保在验证数据是否重复过程中的快速性呢?假

Java数据结构 遍历 排序 查找 算法实现

1. 遍历算法(遍历二叉树6种方法) 1.1. 概述 遍历算法针对二叉树而言的,主要有先序.中序.后序三种遍历顺序,三种顺序又分别有递归和常规算法,二叉树遍历的主要思想是:遍历左子树,遍历右子树,访问根节点,由这三者的遍历顺序来确定是先序.中序还是后序.下面只要求掌握递归遍历算法,常规遍历算法见附录一. 1.2. 先序遍历算法 遍历顺序:访问根节点,遍历左子树,遍历右子树.代码如下: void preOrder(BinaryTreeNode bt) { if (bt == null)// 如果当

Java二分查找算法

二分查找又称折半查找,它是一种效率较高的查找方法. 折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小于该中点元素,则将待查序列缩小为左半部分,否则为右半部分.通过一次比较,将查找区间缩小一半. 折半查找是一种高效的查找方法.它可以明显减少比较次数,提高查找效率.但是,折半查找的先决条件是查找表中的数据元素必须有序. 折半查找法的优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除