基于矩阵分解的隐因子模型

推荐系统是现今广泛运用的一种数据分析方法。常见的如,“你关注的人也关注他”,“喜欢这个物品的用户还喜欢。。”“你也许会喜欢”等等。

常见的推荐系统分为基于内容的推荐与基于历史记录的推荐。

基于内容的推荐,关键在于提取到有用的用户,物品信息,以此为特征向量来进行分类,回归。

基于历史记录的推荐,记录用户的评分,点击,收藏等等行为,以此来判断。

基于内容的推荐对于用户物品的信息收集度要求比较高,而许多情况下很难得到那么多的有用信息。而基于历史记录的方法,则利用一些常见的历史记录,相比与基于内容的方法,数据的收集比较容易。

协同过滤广泛运用在推荐系统中。一般的方式是通过相似性度量,得到相似的用户集合,或者相似的物品集合,然后据此来进行推荐。

Amazon的图书推荐系统就是使用的基于物品相似性的推荐,“我猜你还喜欢**物品”。

不过,简单的协同过滤效果不是很好,我们或考虑用户聚类,得到基于用户的协同过滤;或只考虑物品聚类,得到基于物品的协同过滤。

有人提出了基于矩阵分解(SVD)的隐因子模型(Latent Factor Model)。

隐因子模型通过假设一个隐因子空间,分别得到用户,物品的类别矩阵,然后通过矩阵相乘得到最后的结果。在实践中,LFM的效果会高于一般的协同过滤算法。

1.      LFM基本方法

我们用user1,2,3表示用户,item 1,2,3表示物品,Rij表示用户i对于物品j的评分,也就是喜好度。那么我们需要得到一个关于用户-物品的二维矩阵,如下面的R。

常见的系统中,R是一个非常稀疏的矩阵,因为我们不可能得到所有用户对于所有物品的评分。于是利用稀疏的R,填充得到一个满矩阵R’就是我们的目的。

在协同过滤中,我们通常会假设一些用户,或者一些物品属于一个类型,通过类型来推荐。这这里,我们也可以假设类(class),或者说是因子(factor)。我们假设用户对于特定的因子有一定的喜好度,并且物品对于特定的因子有一定的包含度。

比如,用户对于喜剧,武打的喜好度为1,5;而物品对于喜剧,武打的包含度为5,1;那么我们可以大概地判断用户不会喜欢这部电影。

也就是我们人为地抽象出一个隐形因子空间,然后把用户和物品分别投影到这个空间上,来直接寻找用户-物品的喜好度。

一个简单的二维隐因子空间示意图如下:

上图以男-女;轻松-严肃;两个维度作为隐因子,把用户和电影投影到这个二维空间上。

上面的问题,我们用数学的方法描述,就是写成如下的矩阵:

P表示用户对于某个隐因子的喜好度;Q表示物品对于某个隐因子的包含度。我们使用矩阵相乘得到用户-物品喜好度。

正如上面所说,R是一个稀疏的矩阵,我们通过R中的已知值,得到P,Q后,再相乘,反过来填充R矩阵,最后得到一个满的R矩阵。

于是隐因子模型转化为矩阵分解问题,常见的有SVD,以及下面的一些方法。

下面介绍具体的方法

2.      Batch learning of SVD

设已知评分矩阵V,I为索引矩阵,I(I,j)=1表示V中的对应元素为已知。U,M分别表示用户-factor,物品-factor矩阵。

于是,我们先用V分解为U*M,目标函数如下:

第一项为最小二乘误差,P可以简单理解为点乘;

第二项,第三项为防止过拟合的正则化项。

求解上述的优化问题,可以用梯度下降法。计算得负梯度方向如下:

我们每次迭代,先计算得到U,M的负梯度方向,然后更新U,M;多次迭代,直至收敛。

这种方法的缺点是对于大的稀疏矩阵来说,有很大的方差,要很小的收敛速度才能保证收敛。

改进:可以考虑加入一个动量因子,来加速其收敛速度:

3.      Incomplete incremental learning of SVD

上述的方法对于大的稀疏矩阵来说,不是很好的方法。

于是,我们细化求解过程。

改进后的最优化目标函数如下:

也就是,我们以V的行为单位,每次最优化每一行,从而降低batch learning的方差。

负梯度方向:

4.      Complete incremental learning of SVD

同样的,根据incrementlearning的减少方差的思想,我们可以再次细化求解过程。

以V的已知元素为单位,求解。

最优化目标函数如下:

每次迭代,我们遍历每个V中的已知元素,求得一个负梯度方向,更行U,M;

另两个改进的SVD-bias SVD 和constraint SVD。

bias-SVD

一般的SVD的最优化目标函数如下:

其中第一项为最小二乘项,后两项为正则化约束,防止过拟合。

第一项中的P,可以简单定义为点乘,如下:

P=Ui’*Mj;

我们知道,每个用户都有不同的打分习惯。比如,A,B两个用户对于电影C都是同样的喜好层度,为3。不过A是一个严格的打分者,他一般倾向于保守打分,于是A给电影C的打分为3-0.5=2.5;而B是一个宽松的打分者,他的分数便为3+0.5=4;

如果我们不考虑上面的因素,就会简单地判断B更喜欢电影C。

于是,我们希望引入一个无偏的喜好度U和M,以及额外的bias偏差变量alfa,beta。用U,M来描述无偏喜好,alfa,beta描述打分宽松度。这样,我们的P函数就可以写成:

如果在加入一个基本分a,公式最终可以写成:

目标函数:

上述为四个变量的凸优化过程,其中关于Ui,Mj的负梯度同completeincremental SVD,而关于alfa,beta的求解如下:

负梯度:

于是我们遍历整个V矩阵,对于已知元素,更新上面四个值;迭代计算,直至收敛。

Constraint SVD

SVD是矩阵乘法的方式,得到用户-物品可能喜好度。从数学形式上我们可以看出,隐因子模型同时考虑了用户聚类,物品聚类,用类似聚类的信息填充了这些Miss value。如果某个用户的U-M行过于稀疏,而某个物品M-U不稀疏,(这种情况是常见的)。那么Miss value的填充很大程度上取决于这个物品的属性,最后得到近似于这个物品的平均值。

也就是,在用户,物品信息不平衡的情况下,我们容易减少用户对于喜好的影响程度。如下的contraint SVD一定程度上解决了这个问题。

我们重新定义U矩阵,如下:

其中Y表示用户的无偏喜好,I为已知元素的索引,W为一个大小=物品矩阵M-factor的矩阵。

我们可以看出,对于不同的用户,只要他们购买相同的物品,那么后一项就会完全一样。以此来进一步刻画用户特征。

对于稀疏的用户行为,后一项相当于预先填充了用户矩阵。

目标函数:

其中

负梯度方向:

算法优化:

上面的负梯度中,我们可以看出,每次计算时,对于同一用户来说,这一行的目标值,都具有相同的一项,于是我们可以考虑以行为单位,记录中间重复计算的项,以此简化计算。

参考文献:A Guide to Singular Value Decomposition for Collaborative Filtering

时间: 2024-10-13 06:55:20

基于矩阵分解的隐因子模型的相关文章

基于矩阵分解的推荐系统应用

使用MATLAB尝试了随机梯度下降的矩阵分解方法,实现了一个比较简单的推荐系统的原理. 常用推荐系统的方法有协同过滤,    基于物品内容过滤等等. 这次是用的矩阵分解模型属于协同过滤的一种方法,大致原理是通过一定数量的因子来描述各个用户的喜好和各个物品的属性. 通过随机梯度下降法分解后得到两个矩阵,一个是用户因子矩阵,另一个是物品因子矩阵. 这两个矩阵相乘可以得到所有用户对所有电影的预测评分. 以Movie-Lens数据集举例,这包含943个用户对1682部电影的十万条评分. 第一列用户编号,

简单的基于矩阵分解的推荐算法-PMF, NMF

介绍: 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filtering),它是基于这样的假设:用户如果在过去对某些项目产生过兴趣,那么将来他很可能依然对其保持热忱.其中协同过滤技术又可根据是否采用了机器学习思想建模的不同划分为基于内存的协同过滤(Memory-based CF)与基于模型的协同过滤技术(Model-based CF).其中基于模型的协同过滤技术中尤为矩阵分解(Matrix Factorization)技术最为普遍和流行,因为它的可扩展性极好并且易

Mahout分布式运行实例:基于矩阵分解的协同过滤评分系统

Apr 08, 2014  Categories in tutorial tagged with Mahout hadoop 协同过滤  Joe Jiang 前言:之前配置Mahout时测试过一个简单的推荐例子,当时是在Eclipse上运行的,由于集成插件的缘故,所以一切进行的都比较顺利,唯一不足的是那是单机运行的,没有急于分布式系统处理.所以基于测试分布式处理环境的目的,下午找了一个实例来运行,推荐系统原型是一个电影评分的系统. 一.问题描述 对于协同过滤(Collaborative Filt

用Spark学习矩阵分解推荐算法

在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法.而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$ 其中k为分解成低维的维数,一般远比m和n小.如果大

矩阵分解

矩阵分解在推荐系统中的应用 浅谈矩阵分解在推荐系统中的应用 SVD在推荐系统中的应用 用于推荐系统的一种矩阵分解库:LibMF 基于矩阵分解的推荐算法,简单入门 - kobeshow

基于One-Class的矩阵分解方法

在矩阵分解中. 有类问题比較常见,即矩阵的元素仅仅有0和1. 相应实际应用中的场景是:用户对新闻的点击情况,对某些物品的购买情况等. 基于graphchi里面的矩阵分解结果不太理想.调研了下相关的文献,代码主要实现了基于PLSA的分解方法,具体请參考后面的參考文献 #!/usr/local/bin/python #-*-coding:utf-8-*- import sys import math import numpy as np import string import random "&q

推荐系统中的矩阵分解演变方式

推荐算法主要分为基于内容的算法和协同过滤. 协同过滤的两种基本方法是基于邻居的方法(基于内容/物品的协同过滤)和隐语义模型. 矩阵分解乃是实现隐语义模型的基石. 矩阵分解根据用户对物品的评分, 推断出用户和物品的隐语义向量, 然后根据用户和物品的隐语义向量来进行推荐. 推荐系统用到的数据可以有显式评分和隐式评分. 显式评分时用户对物品的打分, 显式评分矩阵通常非常稀疏. 隐式评分是指用户的浏览, 购买, 搜索等历史记录, 表示的是用户行为的有无, 所以是一个密集矩阵. 1. 基本矩阵分解 矩阵分

矩阵分解在推荐系统中的应用

矩阵分解是最近几年比较火的算法,经过kddcup和netflix比赛的多人多次检验,矩阵分解可以带来更好的结果,而且可以充分地考虑各种因素的影响,有非常好的扩展性,因为要考虑多种因素的综合作用,往往需要构造cost function来将矩阵分解问题转化为优化问题,根据要考虑的因素为优化问题添加constraints,然后通过迭代的方法进行矩阵分解,原来评分矩阵中的missing vlaue可以通过分解后得到的矩阵求的. 本文将简单介绍下最近学习到的矩阵分解方法. (1)PureSvd 怎么评价这

矩阵分解在协同过滤推荐算法中的应用

在协同过滤推荐算法总结中,我们讲到了用矩阵分解做协同过滤是广泛使用的方法,这里就对矩阵分解在协同过滤推荐算法中的应用做一个总结.(过年前最后一篇!祝大家新年快乐!明年的目标是写120篇机器学习,深度学习和NLP相关的文章) 1. 矩阵分解用于推荐算法要解决的问题 在推荐系统中,我们常常遇到的问题是这样的,我们有很多用户和物品,也有少部分用户对少部分物品的评分,我们希望预测目标用户对其他未评分物品的评分,进而将评分高的物品推荐给目标用户.比如下面的用户物品评分表: 用户\物品 物品1 物品2 物品