解读Unity中的CG编写Shader系列五——理论知识

经过前面的系列文章中的三个例子,尽管代码简单,但是我想应该还有些地方没有100%弄明白,我们现在得回过头来补充一些必备的数学、图形学知识

1、图形管道

第一个例子中我有提到顶点着色和片段着色在整个图形绘制过程中属于一个环节,整个过程叫做管道,这个管道的所有环节包括:

在整个管道中,只有顶点着色与片段着色是可编程的,顶点数据和帧缓存是具体的数据,剩下的环节是固定功能的环节,即不能用cg去编程的环节。

2、数据流

3、语义、特殊参数(uniform)

前文已经大量接触到语义,语义的存在意义可以理解为给普通的向量或者标量赋予物理意义,比如一个向量(1,1)如果没有语义,我可以把它当做一个速度为1米/S秒的小球,也可以认为他是直线y=-x的一条法向量。而如果我们给这个向量(1,1)后面加上语义,例如(1,1) :SPEED,或者(1,1):NORMAL,那我们的程序就知道了这个向量的物理特性,至少不会混淆他们引起混乱。

uniforms是unity提供给我们的特定参数,他们也有向量、标量和矩阵,他独立于片段、顶点、图元之外而存在,如果将他们组成的网格mesh理解为一个庞大的宇宙,这些uniforms就好似大宇宙中的物理法则,对于任何的顶点、片段、图元都适用,且数值相同。

4、顶点变换

在了解顶点变换之前,我们要明白顶点着色器以及其后续的几个环节的最终目的是要将几何图元(例如三角形)的顶点从模型坐标系变换至显示屏坐标系。

这一点对于初接触Unity的人应该有很深的影像。你在场景中创建一个立体图形,然后创建一个主摄像头,那么最终游戏所看到的画面到底通过这个立体图形以及相机的种种参数经历了怎样的计算与交织呢?

整个顶点变换过程分为5个步骤:

需要注意的是,前3个变换是在顶点着色器中完成的,而透视变换域视窗变换是在后续的环节中完成的。也就是说只有前3个变换过程是可编程的。

前3个变换所用到的3个矩阵均可以通过uniform参数获取,并且unity还提供了一个MVP参数,即整合了这3个矩阵,直接完成从模型坐标系至裁剪坐标系的变换。

时间: 2024-10-25 23:01:56

解读Unity中的CG编写Shader系列五——理论知识的相关文章

解读Unity中的CG编写Shader系列五??理论知识

转自 http://www.itnose.net/detail/6098474.html 经过前面的系列文章中的三个例子,尽管代码简单,但是我想应该还有些地方没有100%弄明白,我们现在得回过头来补充一些必备的数学.图形学知识 1.图形管道 第一个例子中我有提到顶点着色和片段着色在整个图形绘制过程中属于一个环节,整个过程叫做管道,这个管道的所有环节包括: 在整个管道中,只有顶点着色与片段着色是可编程的,顶点数据和帧缓存是具体的数据,剩下的环节是固定功能的环节,即不能用cg去编程的环节. 2.数据

解读Unity中的CG编写Shader系列一

CG=C for Graphics  用于计算机图形编程的C语言超集 前提知识点: 1.CG代码必须用 CGPROGRAM ... ENDCG括起来 2.顶点着色器与片段着色器的主函数名称可随意,但需要再#pragma vert 与#pragma fragment中声明并且与主函数名完全匹配,shader才会找到入口 3.float4是一种压缩数组,float4 vert与float vert[4]严格意义上讲不同,虽然都是存放4个float,但float4作为向量类型做点乘.内积等处理更快速

解读Unity中的CG编写Shader系列四——unity中的圆角矩形shader

上篇文章中我们掌握了表面剔除和剪裁模式 这篇文章将利用这些知识实现一个简单的,但是又很常用的例子:把一张图片做成圆角矩形 例3:圆角矩形Shader 好吧我承认在做这个例子的时候走了不少弯路,由于本人对矩阵的知识掌握已经悉数还给老师,所以一开始用了一些笨办法计算圆角矩形区域. 我们知道TEXTCOORD0是一个以对象为坐标系的坐标,并且范围在该坐标的第一象限,取值为(0,0)到(1,1) 那么我们把每一张图片都看做一张1X1大小的矩形 我们要在1X1大小的矩形中擦除4个角,应该是这样: 以左上角

解读Unity中的CG编写Shader系列9——镜面反射

讨论完漫反射之后,接下来肯定就是镜面反射了 在开始镜面反射shader的coding之前,要扩充一下前面提到的知识,加深理解镜面反射与漫反射的区别. 引用一下一位前人博文中的一些基础概念,特别是关于冯氏反射模型的: 平行光(directional light) 一种是从特定方向射入并只会照亮面对入射方向的物体,我们称之为平行光(directional light). 环境光(ambient light) 另一种光是来自所有方向并且会照亮所有物体,不管这些物体的朝向如何,我们称之为环境光(ambi

解读Unity中的CG编写Shader系列6——漫反射

如果前面几个系列文章的内容过于冗长缺乏趣味着实见谅,由于时间原因前面的混合部分还没有写完,等以后再补充,现在开始关于反射的内容了. 折射与反射 在物理世界中,光的反射与折射往往是同时存在的,光源由真空或者空气中射入一种材料,光在进入这种材料的同时就发生了折射,折射的程度与各个介质的折射率有关,使光的传播路线偏离原来的路线: 继而如果光在通过不同传播介质的表面时,会像乒乓球一样弹回来,我们人眼能够看到东西,都是因为东西会反射光源,如果一种物质无法反射光,或者没有光源,我们就看不到东西.同样对于不同

解读Unity中的CG编写Shader系列6——不透明度与混合

1.不透明度 当我们要将两个半透的纹理贴图到一个材质球上的时候就遇到混合的问题,由于前面的知识我们已经知道了片段着色器以及后面的环节的主要工作是输出颜色与深度到帧缓存中,所以两个纹理在每个像素上的颜色到底以怎样的形式混合在一起最后输出到帧缓存中是我们现在首要讨论的内容. 1.混合(blending) 上一篇文章中的管道环节中的"逐帧操作"环节中的一项操作就是混合操作,可见混合操作是不可编程的固定功能环节. 在混合操作中,我们将片段着色器中计算出来的颜色称之为 "源颜色&quo

解读Unity中的CG编写Shader系列3——表面剔除与剪裁模式

在上一个样例中,我们得到了由mesh组件传递的信息经过数学转换至合适的颜色区间以颜色的形式着色到物体上. 这篇文章将要在此基础上研究片段的擦除(discarding fragments)和前面剪裁.后面剪裁(front face culling and back face culling)来达到透明效果. 当一个mesh组件的信息被传递后,我们能够通过代码决定哪些部分渲染(render)出来.而哪些部分不要.这个过程就像把那些不要的部分剔除了,我们看不到他.尽管他的mesh信息还在.可是我们的G

解读Unity中的CG编写Shader系列三

转自http://www.itnose.net/detail/6096068.html 在上一个例子中,我们得到了由mesh组件传递的信息经过数学转换至合适的颜色区间以颜色的形式着色到物体上.这篇文章将要在此基础上研究片段的擦除(discarding fragments)和前面剪裁.后面剪裁(front face culling and back face culling)来达到透明效果. 当一个mesh组件的信息被传递后,我们可以通过代码决定哪些部分渲染(render)出来,而哪些部分不要,这

解读Unity中的CG编写Shader系列七(不透明度与混合)

转自http://www.itnose.net/detail/6098539.html 1.不透明度 当我们要将两个半透的纹理贴图到一个材质球上的时候就遇到混合的问题,由于前面的知识我们已经知道了片段着色器以及后面的环节的主要工作是输出颜色与深度到帧缓存中,所以两个纹理在每个像素上的颜色到底以怎样的形式混合在一起最后输出到帧缓存中是我们现在首要讨论的内容. 1.混合(blending) 上一篇文章中的管道环节中的“逐帧操作”环节中的一项操作就是混合操作,可见混合操作是不可编程的固定功能环节. 在