ural1297 后缀数组+RMQ

RMQ即求区间(i,j)的最值。通过O(nlogn)处理,O(1)给出答案。

RMQ主要是动态规划来做。dp[i][j]表示从i开始的长为2^j的区间最值。

那么可以得到dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);

dp[i][j],这个区间可以分为2段(可以重叠),那最值就是这两段的最值。

查询时要找到那个j,那j=(int)(log((y-x+1)*1.0)/log(2.0));

对于求回文 可以转变为当前的位子进行枚举 求当前的位置的后缀和当前位置的前面部分的公共长度,又前面一部分就是在后面添加的2*n-i的位置
所以只要求出height[i+1.....2*n-i]的最小值,这里就用到RMQ来做;

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
//#include<Windows.h>
#define maxn 2100
#define LL long long
using namespace std;
int wa[maxn],wb[maxn],wv[maxn],WS[maxn],n;
int dp[maxn][25];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}
int min(int x,int y)
{return x<y?x:y;}
void da(int *r,int *sa,int n,int m)
{
    int i,j,p,*x=wa,*y=wb,*t;
    for(i=0;i<m;i++) WS[i]=0;
    for(i=0;i<n;i++) WS[x[i]=r[i]]++;
    for(i=1;i<m;i++) WS[i]+=WS[i-1];
    for(i=n-1;i>=0;i--) sa[--WS[x[i]]]=i;
    for(j=1,p=1;p<n;j*=2,m=p)
    {
        for(p=0,i=n-j;i<n;i++) y[p++]=i;
        for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
        for(i=0;i<n;i++) wv[i]=x[y[i]];
        for(i=0;i<m;i++) WS[i]=0;
        for(i=0;i<n;i++) WS[wv[i]]++;
        for(i=1;i<m;i++) WS[i]+=WS[i-1];
        for(i=n-1;i>=0;i--) sa[--WS[wv[i]]]=y[i];
        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
    }
    return;
}
int Rank[maxn],height[maxn];
void calheight(int *r,int *sa,int n)
{
    int i,j,k=0;
    for(i=1;i<=n;i++) Rank[sa[i]]=i;
    for(i=0;i<n;height[Rank[i++]]=k)
        for(k?k--:0,j=sa[Rank[i]-1];r[i+k]==r[j+k];k++);
    return;
}
int r[maxn],sa[maxn];
void RMQ()
{
    int i,j;
    memset(dp,127,sizeof(dp));
    for(i=1;i<=2*n+1;i++)
        dp[i][0]=height[i];
    for(j=1;j<=20;j++)
        for(i=1;i+(1<<j)-1<=2*n+1;i++)
        {
            dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
        }
}
int lcp(int left,int right)
{
    int a=Rank[left];
    int b=Rank[right];
    if(a>b)
    {
        int t=a;
        a=b;
        b=t;
    }
    a++;
    int k=(int)(log((b-a+1)*1.0)/log(2.0));
    return min(dp[a][k],dp[b-(1<<k)+1][k]);
}
char s[maxn];
int main()
{
    int i,j;
    scanf("%s",s);
    n=strlen(s);
    s[n]=‘#‘;
    int len=n+1;
    for(i=n-1;i>=0;i--)
        s[len++]=s[i];
    //printf("%s\n",s);
    for(i=0;i<2*n+1;i++)
        r[i]=s[i];
    r[2*n+1]=0;
    da(r,sa,n*2+2,125);
    calheight(r,sa,n*2+1);
    RMQ();
    int ans=-1;
    int set=0;
    int res;
    //对于求回文 可以转变为当前的位子进行枚举 求当前的位置的后缀和当前位置的前面部分的公共长度,又前面一部分就是在后面添加的2*n-i的位置
    //所以只要求出height[i+1.....2*n-i]的最小值
    for(i=0;i<n;i++)
    {
        res=lcp(i,2*n-i)*2-1;//对于奇数
        if(res>ans)
        {
            ans=res;
            set=i;
        }
        res=lcp(i,2*n-i+1)*2;//对于偶数
        if(res>ans)
        {
            ans=res;
            set=i;
        }
    }
    if(ans%2)
    {
        for(i=set-ans/2;i<=set+ans/2;i++)
        {
            printf("%c",s[i]);
        }
    }
    else
    {
        for(i=set-ans/2;i<=set+ans/2-1;i++)
        {
            printf("%c",s[i]);
        }
    }
    printf("\n");
    //system("pause");
}
时间: 2024-12-22 07:47:05

ural1297 后缀数组+RMQ的相关文章

【uva10829-求形如UVU的串的个数】后缀数组+rmq or 直接for水过

题意:UVU形式的串的个数,V的长度规定,U要一样,位置不同即为不同字串 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=&problem=1770 题解:一开始理解错题意,以为是abcxxxcba(xxx为v),开心地打了后缀数组后发现哎样例不对丫.. UVA的意思是abcxxxabc(xxx为v). 类似poj3693,我们暴

BZOJ 题目3172: [Tjoi2013]单词(AC自动机||AC自动机+fail树||后缀数组暴力||后缀数组+RMQ+二分等五种姿势水过)

3172: [Tjoi2013]单词 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 1890  Solved: 877 [Submit][Status][Discuss] Description 某人读论文,一篇论文是由许多单词组成.但他发现一个单词会在论文中出现很多次,现在想知道每个单词分别在论文中出现多少次. Input 第一个一个整数N,表示有多少个单词,接下来N行每行一个单词.每个单词由小写字母组成,N<=200,单词长度不超过10^6

HDU_6194 后缀数组+RMQ

好绝望的..想了五个多小时,最后还是没A...赛后看了下后缀数组瞬间就有了思路...不过因为太菜,想了将近两个小时才吧这个题干掉. 首先,应当认为,后缀数组的定义是,某字符串S的所有后缀按照字典序有小到大的顺序排列(使用下标表示后缀).因为具体过程没太看懂,但是参见刘汝佳蓝书<算法竞赛黑暗圣典>可以得到一个聪明的NLOGN的神器算法.不过这个不太重要. 之后还可以通过他在LCP问题中提到的RANK,height数组相关算法,处理出来height数组,之后其他的可以扔掉. <黑暗圣典>

Codeforces Round #422 (Div. 2) E. Liar 后缀数组+RMQ+DP

E. Liar The first semester ended. You know, after the end of the first semester the holidays begin. On holidays Noora decided to return to Vi?kopolis. As a modest souvenir for Leha, she brought a sausage of length m from Pavlopolis. Everyone knows th

SPOJ687---REPEATS - Repeats(后缀数组+RMQ)

A string s is called an (k,l)-repeat if s is obtained by concatenating k>=1 times some seed string t with length l>=1. For example, the string s = abaabaabaaba is a (4,3)-repeat with t = aba as its seed string. That is, the seed string t is 3 charac

HDU2459 后缀数组+RMQ

题目大意: 在原串中找到一个拥有连续相同子串最多的那个子串 比如dababababc中的abababab有4个连续的ab,是最多的 如果有同样多的输出字典序最小的那个 这里用后缀数组解决问题: 枚举连续子串的长度l , 那么从当前位置0出发每次递增l,拿 i 和 i+l 开头的后缀求一个前缀和val , 求解依靠RMQ 得到区间 rank(i),rank(i+l) 那么连续的子串个数应该是val/l+1 但是由于你不一定是从最正确的位置出发,那么我们就需要不断将这个i往前推l位,直到某一位字符不

POJ 3693 后缀数组+RMQ

点击打开链接 题意:问连续重复部分最多的串是什么,不能重叠,且我们要字典序最小的串如xbcabcab,有bcabca重复次数为2,cabcab重复次数也为2,那么要前边那个 思路:以前写过一个类似的,SPOJ 687,这个只是求连续重复部分最多的串的次数,并不需要将按字典序最小串输出,那么我们可以用到SPOJ687的代码,用它我们可以求出那个重复的次数和满足这个次数的串的长度,那么就只差找到字典序最小的那个串了,而我们知道后缀数组的sa数组就是按字典序来的嘛,从字典序最小开始找,找到就跳出,输出

uva 12338 - Anti-Rhyme Pairs(后缀数组+RMQ)

题目链接:uva 12338 - Anti-Rhyme Pairs 题目大意:给定若干个字符串,每次询问两个字符串的最长公共前缀. 解题思路:本来应该将每个字符串连接起来做后缀数组,但其实可以直接把一个字符串看成是一个字符,然后排序了就对应是SA数组,然后处理height即可.然后根据后缀数组的性质,字符串i和j的最长公共前缀长度即为rank[i]+1~rank[j]之间height的最小值.特判i=j的情况. #include <cstdio> #include <cstring>

【poj3693】Maximum repetition substring(后缀数组+RMQ)

自己看着大牛的论文学了一下后缀数组,看了好久好久,想了好久好久才懂了一点点皮毛TAT 然后就去刷传说中的后缀数组神题,poj3693是进化版的,需要那个相同情况下字典序最小,搞这个搞了超久的说. 先简单说一下后缀数组.首先有几个重要的数组: ·SA数组(后缀数组):保存所有后缀排序后从小到大的序列.[即SA[i]=j表示排名第i的后缀编号为j]        ·rank数组(名次数组):记录后缀的名次.[即rank[i]=j表示编号为i的后缀排名第j] 用倍增算法可以在O(nlogn)时间内得出