Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
After
inventing Turing Tree, 3xian always felt boring when solving problems
about intervals, because Turing Tree could easily have the solution. As
well, wily 3xian made lots of new problems about intervals. So, today,
this sick thing happens again...
Now given a sequence of N
numbers A1, A2, ..., AN and a number of Queries(i, j) (1≤i≤j≤N). For
each Query(i, j), you are to caculate the sum of distinct values in the
subsequence Ai, Ai+1, ..., Aj.
Input
The first line is an integer T (1 ≤ T ≤ 10), indecating the number of testcases below.
For each case, the input format will be like this:
* Line 1: N (1 ≤ N ≤ 30,000).
* Line 2: N integers A1, A2, ..., AN (0 ≤ Ai ≤ 1,000,000,000).
* Line 3: Q (1 ≤ Q ≤ 100,000), the number of Queries.
* Next Q lines: each line contains 2 integers i, j representing a Query (1 ≤ i ≤ j ≤ N).
Output
For each Query, print the sum of distinct values of the specified subsequence in one line.
Sample Input
2
3
1 1 4
2
1 2
2 3
5
1 1 2 1 3
3
1 5
2 4
3 5
Sample Output
1
5
6
3
6
Author
[email protected]
Source
HDOJ Monthly Contest – 2010.03.06
Recommend
lcy
题目大意:
查询区间[L, R]内所有不同元素的和。
解法:
在线做法我还不清楚,有一个利用树状数组的巧妙的离线做法。
将所有查询[L, R]按右端点R从小到大排序后,依次处理。
要点是记录一个数上一次出现的位置,这样就可以将当前的数在上个位置上的计数消除。
这样做不会影响当前的查询,因为当这个数的当前位置离所查询的区间的右端点更近。
Implementation:
总体是个two-pointer
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int N(3e4+5), M(1e5+5); LL bit[N], ans[M]; int pos[N], a[N], b[N], n, q; void add(int x, int v) { for(; x<=n; bit[x]+=v, x+=x&-x); } LL sum(int x) { LL res=0; for(; x; res+=bit[x], x-=x&-x); return res; } struct P { int l, r, id; P(int l, int r, int id):l(l),r(r),id(id){} P(){} bool operator<(const P &b)const{return r<b.r;} }p[M]; int main() { int T; for(cin>>T; T--; ) { cin>>n; for(int i=1; i<=n; i++) cin>>a[i], b[i-1]=a[i]; sort(b, b+n); //error-prone int *e=unique(b, b+n); memset(bit, 0, sizeof(bit)); memset(pos, 0, sizeof(pos)); cin>>q; for(int l, r, i=0; i<q; i++) { cin>>l>>r; p[i]={l, r, i}; } sort(p, p+q); for(int i=0, j=1, k; i<q && j<=n; ) { for(; j<=p[i].r; j++) { int id=lower_bound(b, e, a[j])-b; if(pos[id]) add(pos[id], -a[j]); pos[id]=j, add(j, a[j]); } for(k=i; p[k].r==p[i].r; k++) { ans[p[k].id]=sum(p[k].r)-sum(p[k].l-1); } i=k; } for(int i=0; i<q; i++) cout<<ans[i]<<endl; } return 0; }