python多进程

序. multiprocessing
python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
1. Process
创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。
属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。
 
例1.1:创建函数并将其作为单个进程
import multiprocessing
import time

def worker(interval):
    n = 5
    while n > 0:
        print("The time is {0}".format(time.ctime()))
        time.sleep(interval)
        n -= 1

if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.start()
    print "p.pid:", p.pid
    print "p.name:", p.name
    print "p.is_alive:", p.is_alive()
#p.pid: 8736
#p.name: Process-1
#p.is_alive: True
#The time is Tue Apr 21 20:55:12 2015
#The time is Tue Apr 21 20:55:15 2015
#The time is Tue Apr 21 20:55:18 2015
#The time is Tue Apr 21 20:55:21 2015
#The time is Tue Apr 21 20:55:24 2015
例1.2:创建函数并将其作为多个进程 
import multiprocessing
import time

def worker_1(interval):
    print "worker_1"
    time.sleep(interval)
    print "end worker_1"

def worker_2(interval):
    print "worker_2"
    time.sleep(interval)
    print "end worker_2"

def worker_3(interval):
    print "worker_3"
    time.sleep(interval)
    print "end worker_3"

if __name__ == "__main__":
    p1 = multiprocessing.Process(target = worker_1, args = (2,))
    p2 = multiprocessing.Process(target = worker_2, args = (3,))
    p3 = multiprocessing.Process(target = worker_3, args = (4,))

    p1.start()
    p2.start()
    p3.start()

    print("The number of CPU is:" + str(multiprocessing.cpu_count()))
    for p in multiprocessing.active_children():
        print("child   p.name:" + p.name + "\tp.id" + str(p.pid))
    print "END!!!!!!!!!!!!!!!!!"
#The number of CPU is:4
#child   p.name:Process-3    p.id7992
#child   p.name:Process-2    p.id4204
#child   p.name:Process-1    p.id6380
#END!!!!!!!!!!!!!!!!!
#worker_1
#worker_3
#worker_2
#end worker_1
#end worker_2
#end worker_3  
例1.3:将进程定义为类    
import multiprocessing
import time

class ClockProcess(multiprocessing.Process):
    def __init__(self, interval):
        multiprocessing.Process.__init__(self)
        self.interval = interval

    def run(self):
        n = 5
        while n > 0:
            print("the time is {0}".format(time.ctime()))
            time.sleep(self.interval)
            n -= 1

if __name__ == ‘__main__‘:
    p = ClockProcess(3)
    p.start()
注:进程p调用start()时,自动调用run()
#the time is Tue Apr 21 20:31:30 2015
#the time is Tue Apr 21 20:31:33 2015
#the time is Tue Apr 21 20:31:36 2015
#the time is Tue Apr 21 20:31:39 2015
#the time is Tue Apr 21 20:31:42 2015
例1.4:daemon程序对比结果
import multiprocessing
import time

def worker(interval):
    print("work start:{0}".format(time.ctime()));
    time.sleep(interval)
    print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.start()
    print "end!"
#end!
#work start:Tue Apr 21 21:29:10 2015
#work end:Tue Apr 21 21:29:13 2015 
1.4-2 加上daemon属性   
import multiprocessing
import time

def worker(interval):
    print("work start:{0}".format(time.ctime()));
    time.sleep(interval)
    print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.daemon = True
    p.start()
    print "end!"
#end! 
注:因子进程设置了daemon属性,主进程结束,它们就随着结束了。
1.4-3 设置daemon执行完结束的方法
import multiprocessing
import time

def worker(interval):
    print("work start:{0}".format(time.ctime()));
    time.sleep(interval)
    print("work end:{0}".format(time.ctime()));

if __name__ == "__main__":
    p = multiprocessing.Process(target = worker, args = (3,))
    p.daemon = True
    p.start()
    p.join()
    print "end!"   
#work start:Tue Apr 21 22:16:32 2015
#work end:Tue Apr 21 22:16:35 2015
#end! 
2. Lock 
当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。
import multiprocessing
import sys

def worker_with(lock, f):
    with lock:
        fs = open(f, ‘a+‘)
        n = 10
        while n > 1:
            fs.write("Lockd acquired via with\n")
            n -= 1
        fs.close()
        
def worker_no_with(lock, f):
    lock.acquire()
    try:
        fs = open(f, ‘a+‘)
        n = 10
        while n > 1:
            fs.write("Lock acquired directly\n")
            n -= 1
        fs.close()
    finally:
        lock.release()
    
if __name__ == "__main__":
    lock = multiprocessing.Lock()
    f = "file.txt"
    w = multiprocessing.Process(target = worker_with, args=(lock, f))
    nw = multiprocessing.Process(target = worker_no_with, args=(lock, f))
    w.start()
    nw.start()
    print "end"
#Lockd acquired via with
#Lockd acquired via with
#Lockd acquired via with
#Lockd acquired via with
#Lockd acquired via with
#Lockd acquired via with
#Lockd acquired via with
#Lockd acquired via with
#Lockd acquired via with
#Lock acquired directly
#Lock acquired directly
#Lock acquired directly
#Lock acquired directly
#Lock acquired directly
#Lock acquired directly
#Lock acquired directly
#Lock acquired directly
#Lock acquired directly 
3. Semaphore     
Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。
import multiprocessing
import time

def worker(s, i):
    s.acquire()
    print(multiprocessing.current_process().name + "acquire");
    time.sleep(i)
    print(multiprocessing.current_process().name + "release\n");
    s.release()

if __name__ == "__main__":
    s = multiprocessing.Semaphore(2)
    for i in range(5):
        p = multiprocessing.Process(target = worker, args=(s, i*2))
        p.start()
#rocess-1acquire
#Process-1release
# 
#Process-2acquire
#Process-3acquire
#Process-2release
# 
#Process-5acquire
#Process-3release
# 
#Process-4acquire
#Process-5release
# 
#Process-4release
4. Event
Event用来实现进程间同步通信。  
import multiprocessing
import time

def wait_for_event(e):
    print("wait_for_event: starting")
    e.wait()
    print("wairt_for_event: e.is_set()->" + str(e.is_set()))

def wait_for_event_timeout(e, t):
    print("wait_for_event_timeout:starting")
    e.wait(t)
    print("wait_for_event_timeout:e.is_set->" + str(e.is_set()))

if __name__ == "__main__":
    e = multiprocessing.Event()
    w1 = multiprocessing.Process(name = "block",
            target = wait_for_event,
            args = (e,))

    w2 = multiprocessing.Process(name = "non-block",
            target = wait_for_event_timeout,
            args = (e, 2))
    w1.start()
    w2.start()

    time.sleep(3)

    e.set()
    print("main: event is set")
#wait_for_event: starting
#wait_for_event_timeout:starting
#wait_for_event_timeout:e.is_set->False
#main: event is set
#wairt_for_event: e.is_set()->True 
5. Queue         
Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。
 
get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:
import multiprocessing

def writer_proc(q):      
    try:         
        q.put(1, block = False) 
    except:         
        pass   

def reader_proc(q):      
    try:         
        print q.get(block = False) 
    except:         
        pass

if __name__ == "__main__":
    q = multiprocessing.Queue()
    writer = multiprocessing.Process(target=writer_proc, args=(q,))  
    writer.start()   

    reader = multiprocessing.Process(target=reader_proc, args=(q,))  
    reader.start()  

    reader.join()  
    writer.join()
#1  
6. Pipe
Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。
 
send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。 
import multiprocessing
import time

def proc1(pipe):
    while True:
        for i in xrange(10000):
            print "send: %s" %(i)
            pipe.send(i)
            time.sleep(1)

def proc2(pipe):
    while True:
        print "proc2 rev:", pipe.recv()
        time.sleep(1)

def proc3(pipe):
    while True:
        print "PROC3 rev:", pipe.recv()
        time.sleep(1)

if __name__ == "__main__":
    pipe = multiprocessing.Pipe()
    p1 = multiprocessing.Process(target=proc1, args=(pipe[0],))
    p2 = multiprocessing.Process(target=proc2, args=(pipe[1],))
    #p3 = multiprocessing.Process(target=proc3, args=(pipe[1],))

    p1.start()
    p2.start()
    #p3.start()

    p1.join()
    p2.join()
    #p3.join()
7. Pool
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。
#coding: utf-8
import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes = 3)
    for i in xrange(4):
        msg = "hello %d" %(i)
        pool.apply_async(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
    pool.close()
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print "Sub-process(es) done."
#mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello 0
 
#msg: hello 1
#msg: hello 2
#end
#msg: hello 3
#end
#end
#end
#Sub-process(es) done. 
函数解释:
apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
close()    关闭pool,使其不在接受新的任务。
terminate()    结束工作进程,不在处理未完成的任务。
join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。
执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。
例7.2:使用进程池(阻塞) 
#coding: utf-8
import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes = 3)
    for i in xrange(4):
        msg = "hello %d" %(i)
        pool.apply(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
    pool.close()
    pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print "Sub-process(es) done."   
#msg: hello 0
#end
#msg: hello 1
#end
#msg: hello 2
#end
#msg: hello 3
#end
#Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
#Sub-process(es) done.  
例7.3:使用进程池,并关注结果
import multiprocessing
import time

def func(msg):
    print "msg:", msg
    time.sleep(3)
    print "end"
    return "done" + msg

if __name__ == "__main__":
    pool = multiprocessing.Pool(processes=4)
    result = []
    for i in xrange(3):
        msg = "hello %d" %(i)
        result.append(pool.apply_async(func, (msg, )))
    pool.close()
    pool.join()
    for res in result:
        print ":::", res.get()
    print "Sub-process(es) done." 
#msg: hello 0
#msg: hello 1
#msg: hello 2
#end
#end
#end
#::: donehello 0
#::: donehello 1
#::: donehello 2
#Sub-process(es) done.
例7.4:使用多个进程池
#coding: utf-8
import multiprocessing
import os, time, random

def Lee():
    print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID
    start = time.time()
    time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
    end = time.time()
    print ‘Task Lee, runs %0.2f seconds.‘ %(end - start)

def Marlon():
    print "\nRun task Marlon-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 40)
    end=time.time()
    print ‘Task Marlon runs %0.2f seconds.‘ %(end - start)

def Allen():
    print "\nRun task Allen-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 30)
    end = time.time()
    print ‘Task Allen runs %0.2f seconds.‘ %(end - start)

def Frank():
    print "\nRun task Frank-%s" %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 20)
    end = time.time()
    print ‘Task Frank runs %0.2f seconds.‘ %(end - start)
        
if __name__==‘__main__‘:
    function_list=  [Lee, Marlon, Allen, Frank] 
    print "parent process %s" %(os.getpid())

    pool=multiprocessing.Pool(4)
    for func in function_list:
        pool.apply_async(func)     #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中

    print ‘Waiting for all subprocesses done...‘
    pool.close()
    pool.join()    #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
    print ‘All subprocesses done.‘  
#parent process 7704
 
#Waiting for all subprocesses done...
#Run task Lee-6948
 
#Run task Marlon-2896
 
#Run task Allen-7304
 
#Run task Frank-3052
#Task Lee, runs 1.59 seconds.
#Task Marlon runs 8.48 seconds.
#Task Frank runs 15.68 seconds.
#Task Allen runs 18.08 seconds.
#All subprocesses done.
时间: 2024-10-27 13:40:45

python多进程的相关文章

Python 多进程多线编程模板

一.Python 多进程多线程原理介绍 1. Python 全局解释器锁GIL a) Python的全局解释器锁GIL是互斥锁,能够防止本机多个线程一次执行Python字节码:由于CPython的内存管理在线程级别是不安全的(内存泄露),所以这个全局解释器锁是必须的.每个Python进程只能申请使用一个GIL锁,因此Python的多线程虽然是并发的但不能并行处理.Python的解释器每次只能执行一个线程,待GIL锁释放后再执行下一个线程,这样线程轮流被执行. b) Python2.x里,GIL的

Python 多进程实战 & 回调函数理解与实战

这篇博文主要讲下笔者在工作中Python多进程的实战运用和回调函数的理解和运用. 多进程实战 实战一.批量文件下载 从一个文件中按行读取 url ,根据 url 下载文件到指定位置,用多进程实现. #!/usr/local/python27/bin/python2.7 from multiprocessing import Process,Pool import os,time,random,sys import urllib # 文件下载函数 def filedown(url,file):  

Python多进程使用

[Python之旅]第六篇(六):Python多进程使用 香飘叶子 2016-05-10 10:57:50 浏览190 评论0 python 多进程 多进程通信 摘要:   关于进程与线程的对比,下面的解释非常好的说明了这两者的区别:     这里主要说明关于Python多进程的下面几点: 1 2 3 4 5 6 7 1.多进程的使用方法 2.进程间的通信之multiprocessing.Manager()使用 3.Python进程池 ... 关于进程与线程的对比,下面的解释非常好的说明了这两者

Python多进程并发(multiprocessing)用法实例详解

http://www.jb51.net/article/67116.htm 本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心.Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,

Python多进程(1)——subprocess与Popen()

Python多进程方面涉及的模块主要包括: subprocess:可以在当前程序中执行其他程序或命令: mmap:提供一种基于内存的进程间通信机制: multiprocessing:提供支持多处理器技术的多进程编程接口,并且接口的设计最大程度地保持了和threading模块的一致,便于理解和使用. 本文主要介绍 subprocess 模块及其提供的 Popen 类,以及如何使用该构造器在一个进程中创建新的子进程.此外,还会简要介绍 subprocess 模块提供的其他方法与属性,这些功能上虽然没

Python多进程相关的坑

Python的multiprocessing模块实现了多进程功能,但官方文档上只有一些比较简单的用法,主要是使用函数作为process的target,而如何在class中使用多进程并没有多讲解.google出两篇比较详细的文章,建议从它们入门: https://pymotw.com/2/multiprocessing/basics.html https://pymotw.com/2/multiprocessing/communication.html 下面记录一下自己这周在python多进程上碰

【Python之旅】第六篇(六):Python多进程使用

关于进程与线程的对比,下面的解释非常好的说明了这两者的区别: 这里主要说明关于Python多进程的下面几点: 1.多进程的使用方法 2.进程间的通信 3.Python进程池 (1)比较简单的例子 (2)多个进程多次并发的情况 (3)验证apply.async方法是非阻塞的 (4)验证apply.async中的get()方法是阻塞的 1.多进程的使用方法 直接给出下面程序代码及注释: from multiprocessing import Process    #从多进程模块中导入Process

最简单方法远程调试Python多进程子程序

Python 2.6新增的multiprocessing,即多进程,给子进程代码调试有点困难,比如python自带的pdb如果直接在子进程代码里面启动会抛出一堆异常,原因是子进程的stdin/out/err等文件都已关闭,pdb无法调用.据闻winpdb.Wing IDE的调试器能够支持这样的远程调试,但似乎过于重量级(好吧前者比后者要轻多了,但一样要wxPython的环境,再说pdb的灵活可靠它们难以比拟). 其实只需稍作改动即可用pdb继续调试子进程的代码,思路来自这个博客:子进程的stdi

python多进程的理解 multiprocessing Process join run

最近看了下多进程. 一种接近底层的实现方法是使用 os.fork()方法,fork出子进程.但是这样做事有局限性的.比如windows的os模块里面没有 fork() 方法. windows:.linux: 另外还有一个模块:subprocess.这个没整过,但从vamei的博客里看到说也同样有局限性. 所以直接说主角吧 --- multiprocessing模块. multiprocessing模块会在windows上时模拟出fork的效果,可以实现跨平台,所以大多数都使用multiproce

python多进程中使用pool

Python 多进程中使用pool,pool中指定每次运行几个进程,当其中一个进程结束完毕后,会加入新的进程 #!/usr/bin/env python #coding: utf-8 import multiprocessing import os,time,random def Lee(): print "Run task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID start=time.time() time.sleep(random