序. multiprocessing python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。 1. Process 创建进程的类:Process([group [, target [, name [, args [, kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。 方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。 属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。 例1.1:创建函数并将其作为单个进程 import multiprocessing import time def worker(interval): n = 5 while n > 0: print("The time is {0}".format(time.ctime())) time.sleep(interval) n -= 1 if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.start() print "p.pid:", p.pid print "p.name:", p.name print "p.is_alive:", p.is_alive() #p.pid: 8736 #p.name: Process-1 #p.is_alive: True #The time is Tue Apr 21 20:55:12 2015 #The time is Tue Apr 21 20:55:15 2015 #The time is Tue Apr 21 20:55:18 2015 #The time is Tue Apr 21 20:55:21 2015 #The time is Tue Apr 21 20:55:24 2015 例1.2:创建函数并将其作为多个进程 import multiprocessing import time def worker_1(interval): print "worker_1" time.sleep(interval) print "end worker_1" def worker_2(interval): print "worker_2" time.sleep(interval) print "end worker_2" def worker_3(interval): print "worker_3" time.sleep(interval) print "end worker_3" if __name__ == "__main__": p1 = multiprocessing.Process(target = worker_1, args = (2,)) p2 = multiprocessing.Process(target = worker_2, args = (3,)) p3 = multiprocessing.Process(target = worker_3, args = (4,)) p1.start() p2.start() p3.start() print("The number of CPU is:" + str(multiprocessing.cpu_count())) for p in multiprocessing.active_children(): print("child p.name:" + p.name + "\tp.id" + str(p.pid)) print "END!!!!!!!!!!!!!!!!!" #The number of CPU is:4 #child p.name:Process-3 p.id7992 #child p.name:Process-2 p.id4204 #child p.name:Process-1 p.id6380 #END!!!!!!!!!!!!!!!!! #worker_1 #worker_3 #worker_2 #end worker_1 #end worker_2 #end worker_3 例1.3:将进程定义为类 import multiprocessing import time class ClockProcess(multiprocessing.Process): def __init__(self, interval): multiprocessing.Process.__init__(self) self.interval = interval def run(self): n = 5 while n > 0: print("the time is {0}".format(time.ctime())) time.sleep(self.interval) n -= 1 if __name__ == ‘__main__‘: p = ClockProcess(3) p.start() 注:进程p调用start()时,自动调用run() #the time is Tue Apr 21 20:31:30 2015 #the time is Tue Apr 21 20:31:33 2015 #the time is Tue Apr 21 20:31:36 2015 #the time is Tue Apr 21 20:31:39 2015 #the time is Tue Apr 21 20:31:42 2015 例1.4:daemon程序对比结果 import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.start() print "end!" #end! #work start:Tue Apr 21 21:29:10 2015 #work end:Tue Apr 21 21:29:13 2015 1.4-2 加上daemon属性 import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.daemon = True p.start() print "end!" #end! 注:因子进程设置了daemon属性,主进程结束,它们就随着结束了。 1.4-3 设置daemon执行完结束的方法 import multiprocessing import time def worker(interval): print("work start:{0}".format(time.ctime())); time.sleep(interval) print("work end:{0}".format(time.ctime())); if __name__ == "__main__": p = multiprocessing.Process(target = worker, args = (3,)) p.daemon = True p.start() p.join() print "end!" #work start:Tue Apr 21 22:16:32 2015 #work end:Tue Apr 21 22:16:35 2015 #end! 2. Lock 当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。 import multiprocessing import sys def worker_with(lock, f): with lock: fs = open(f, ‘a+‘) n = 10 while n > 1: fs.write("Lockd acquired via with\n") n -= 1 fs.close() def worker_no_with(lock, f): lock.acquire() try: fs = open(f, ‘a+‘) n = 10 while n > 1: fs.write("Lock acquired directly\n") n -= 1 fs.close() finally: lock.release() if __name__ == "__main__": lock = multiprocessing.Lock() f = "file.txt" w = multiprocessing.Process(target = worker_with, args=(lock, f)) nw = multiprocessing.Process(target = worker_no_with, args=(lock, f)) w.start() nw.start() print "end" #Lockd acquired via with #Lockd acquired via with #Lockd acquired via with #Lockd acquired via with #Lockd acquired via with #Lockd acquired via with #Lockd acquired via with #Lockd acquired via with #Lockd acquired via with #Lock acquired directly #Lock acquired directly #Lock acquired directly #Lock acquired directly #Lock acquired directly #Lock acquired directly #Lock acquired directly #Lock acquired directly #Lock acquired directly 3. Semaphore Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。 import multiprocessing import time def worker(s, i): s.acquire() print(multiprocessing.current_process().name + "acquire"); time.sleep(i) print(multiprocessing.current_process().name + "release\n"); s.release() if __name__ == "__main__": s = multiprocessing.Semaphore(2) for i in range(5): p = multiprocessing.Process(target = worker, args=(s, i*2)) p.start() #rocess-1acquire #Process-1release # #Process-2acquire #Process-3acquire #Process-2release # #Process-5acquire #Process-3release # #Process-4acquire #Process-5release # #Process-4release 4. Event Event用来实现进程间同步通信。 import multiprocessing import time def wait_for_event(e): print("wait_for_event: starting") e.wait() print("wairt_for_event: e.is_set()->" + str(e.is_set())) def wait_for_event_timeout(e, t): print("wait_for_event_timeout:starting") e.wait(t) print("wait_for_event_timeout:e.is_set->" + str(e.is_set())) if __name__ == "__main__": e = multiprocessing.Event() w1 = multiprocessing.Process(name = "block", target = wait_for_event, args = (e,)) w2 = multiprocessing.Process(name = "non-block", target = wait_for_event_timeout, args = (e, 2)) w1.start() w2.start() time.sleep(3) e.set() print("main: event is set") #wait_for_event: starting #wait_for_event_timeout:starting #wait_for_event_timeout:e.is_set->False #main: event is set #wairt_for_event: e.is_set()->True 5. Queue Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。 get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码: import multiprocessing def writer_proc(q): try: q.put(1, block = False) except: pass def reader_proc(q): try: print q.get(block = False) except: pass if __name__ == "__main__": q = multiprocessing.Queue() writer = multiprocessing.Process(target=writer_proc, args=(q,)) writer.start() reader = multiprocessing.Process(target=reader_proc, args=(q,)) reader.start() reader.join() writer.join() #1 6. Pipe Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。 send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。 import multiprocessing import time def proc1(pipe): while True: for i in xrange(10000): print "send: %s" %(i) pipe.send(i) time.sleep(1) def proc2(pipe): while True: print "proc2 rev:", pipe.recv() time.sleep(1) def proc3(pipe): while True: print "PROC3 rev:", pipe.recv() time.sleep(1) if __name__ == "__main__": pipe = multiprocessing.Pipe() p1 = multiprocessing.Process(target=proc1, args=(pipe[0],)) p2 = multiprocessing.Process(target=proc2, args=(pipe[1],)) #p3 = multiprocessing.Process(target=proc3, args=(pipe[1],)) p1.start() p2.start() #p3.start() p1.join() p2.join() #p3.join() 7. Pool 在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。 Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。 #coding: utf-8 import multiprocessing import time def func(msg): print "msg:", msg time.sleep(3) print "end" if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply_async(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~" pool.close() pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束 print "Sub-process(es) done." #mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello 0 #msg: hello 1 #msg: hello 2 #end #msg: hello 3 #end #end #end #Sub-process(es) done. 函数解释: apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别) close() 关闭pool,使其不在接受新的任务。 terminate() 结束工作进程,不在处理未完成的任务。 join() 主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。 执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在"end"后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。 例7.2:使用进程池(阻塞) #coding: utf-8 import multiprocessing import time def func(msg): print "msg:", msg time.sleep(3) print "end" if __name__ == "__main__": pool = multiprocessing.Pool(processes = 3) for i in xrange(4): msg = "hello %d" %(i) pool.apply(func, (msg, )) #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去 print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~" pool.close() pool.join() #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束 print "Sub-process(es) done." #msg: hello 0 #end #msg: hello 1 #end #msg: hello 2 #end #msg: hello 3 #end #Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ #Sub-process(es) done. 例7.3:使用进程池,并关注结果 import multiprocessing import time def func(msg): print "msg:", msg time.sleep(3) print "end" return "done" + msg if __name__ == "__main__": pool = multiprocessing.Pool(processes=4) result = [] for i in xrange(3): msg = "hello %d" %(i) result.append(pool.apply_async(func, (msg, ))) pool.close() pool.join() for res in result: print ":::", res.get() print "Sub-process(es) done." #msg: hello 0 #msg: hello 1 #msg: hello 2 #end #end #end #::: donehello 0 #::: donehello 1 #::: donehello 2 #Sub-process(es) done. 例7.4:使用多个进程池 #coding: utf-8 import multiprocessing import os, time, random def Lee(): print "\nRun task Lee-%s" %(os.getpid()) #os.getpid()获取当前的进程的ID start = time.time() time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数 end = time.time() print ‘Task Lee, runs %0.2f seconds.‘ %(end - start) def Marlon(): print "\nRun task Marlon-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 40) end=time.time() print ‘Task Marlon runs %0.2f seconds.‘ %(end - start) def Allen(): print "\nRun task Allen-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 30) end = time.time() print ‘Task Allen runs %0.2f seconds.‘ %(end - start) def Frank(): print "\nRun task Frank-%s" %(os.getpid()) start = time.time() time.sleep(random.random() * 20) end = time.time() print ‘Task Frank runs %0.2f seconds.‘ %(end - start) if __name__==‘__main__‘: function_list= [Lee, Marlon, Allen, Frank] print "parent process %s" %(os.getpid()) pool=multiprocessing.Pool(4) for func in function_list: pool.apply_async(func) #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中 print ‘Waiting for all subprocesses done...‘ pool.close() pool.join() #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束 print ‘All subprocesses done.‘ #parent process 7704 #Waiting for all subprocesses done... #Run task Lee-6948 #Run task Marlon-2896 #Run task Allen-7304 #Run task Frank-3052 #Task Lee, runs 1.59 seconds. #Task Marlon runs 8.48 seconds. #Task Frank runs 15.68 seconds. #Task Allen runs 18.08 seconds. #All subprocesses done.
时间: 2024-10-27 13:40:45