Redis的几点积累

1.Redis比memcache快

  Redis具有事务,持久化等机制,但是它还能做到高性能,原因包括如下:

  • Libevent。和Memcached不同,Redis并没有选择libevent。Libevent为了迎合通用性造成代码庞大(目前Redis代码还不到libevent的1/3)及牺牲了在特定平台的不少性能。Redis用libevent中两个文件修改实现了自己的epoll event loop(4)。业界不少开发者也建议Redis使用另外一个libevent高性能替代libev,但是作者还是坚持Redis应该小巧并去依赖的思路。一个印象深刻的细节是编译Redis之前并不需要执行./configure。
  • CAS问题。CAS是Memcached中比较方便的一种防止竞争修改资源的方法。CAS实现需要为每个cache key设置一个隐藏的cas token,cas相当value版本号,每次set会token需要递增,因此带来CPU和内存的双重开销,虽然这些开销很小,但是到单机10G+ cache以及QPS上万之后这些开销就会给双方相对带来一些细微性能差别。

2.VM特性

  从2.0版本开始,Redis提供虚拟内存支持。

  Redis的数据全部放在内存带来了高速的性能,但是也带来一些不合理之处。比如一个中型网站有100万注册用户,如果这些资料要用Redis来存储,内存的容量必须能够容纳这100万用户。但是业务实际情况是100万用户只有5万活跃用户,1周来访问过1次的也只有15万用户,因此全部100万用户的数据都放在内存有不合理之处,RAM需要为冷数据买单。

  这跟操作系统非常相似,操作系统所有应用访问的数据都在内存,但是如果物理内存容纳不下新的数据,操作系统会智能将部分长期没有访问的数据交换到磁盘,为新的应用留出空间。现代操作系统给应用提供的并不是物理内存,而是虚拟内存(Virtual Memory)的概念。

  Redis的VM依照之前的epoll实现思路依旧是自己实现。但是在前面操作系统的介绍提到OS也可以自动帮程序实现冷热数据分离,Redis只需要OS申请一块大内存,OS会自动将热数据放入物理内存,冷数据交换到硬盘,另外一个知名的“理解了现代操作系统(3)”的Varnish就是这样实现,也取得了非常成功的效果。

  作者antirez在解释为什么要自己实现VM中提到几个原因(6)。主要OS的VM换入换出是基于Page概念,比如OS VM1个Page是4K, 4K中只要还有一个元素即使只有1个字节被访问,这个页也不会被SWAP, 换入也同样道理,读到一个字节可能会换入4K无用的内存。而Redis自己实现则可以达到控制换入的粒度。另外访问操作系统SWAP内存区域时block进程,也是导致Redis要自己实现VM原因之一。

  但是由于其仍然涉及磁盘io,故2.6版本后不再提倡,性能问题。

3.多使用hash类型

  作为一个key value存在,很多开发者自然的使用set/get方式来使用Redis,实际上这并不是最优化的使用方法。尤其在未启用VM情况下,Redis全部数据需要放入内存,节约内存尤其重要。

假如一个key-value单元需要最小占用512字节,即使只存一个字节也占了512字节。这时候就有一个设计模式,可以把key复用,几个key-value放入一个key中,value再作为一个set存入,这样同样512字节就会存放10-100倍的容量。

4.使用aof代替snapshot

  Redis有两种存储方式,默认是snapshot方式,实现方法是定时将内存的快照(snapshot)持久化到硬盘,这种方法缺点是持久化之后如果出现crash则会丢失一段数据。因此在完美主义者的推动下作者增加了aof方式。aof即append only mode,在写入内存数据的同时将操作命令保存到日志文件,在一个并发更改上万的系统中,命令日志是一个非常庞大的数据,管理维护成本非常高,恢复重建时间会非常长,这样导致失去aof高可用性本意。另外更重要的是Redis是一个内存数据结构模型,所有的优势都是建立在对内存复杂数据结构高效的原子操作上,这样就看出aof是一个非常不协调的部分。

  其实aof目的主要是数据可靠性及高可用性,在Redis中有另外一种方法来达到目的:Replication。由于Redis的高性能,复制基本没有延迟。这样达到了防止单点故障及实现了高可用。

时间: 2024-08-08 17:48:01

Redis的几点积累的相关文章

大数据高性能数据库Redis在Windows上的配置

Redis学习笔记----Redis在windows上的安装和配置 Redis简介 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set --有序集合)和hash(哈希类型).这些数据类型都支持push/pop.add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的.在此基础上,redis支持各种不同方式的排序.与memcach

redis(三)积累-基本的取值和设值

1.  先把redis的连接池拿出来, JedisPool pool=new JedisPool(new JedisPoolConfig(),"127.0.0.1") Jedis jedis=pool.getResource(); 2. 设值: jedis.set("key1","value1"); 取值: jedis.get("key1"); 删除: jedis.del("key1"); 给一个key叠加

Nginx+Lua 积累

Nginx+Lua 积累 1.解析16进制编码的中文参数 复制代码 local encodeStr = "%E6%B0%94" local decodeStr = ""; for i = 2, #encodeStr - 1, 3 do local num = encodeStr:sub(i, i + 1); num = tonumber(num, 16); decodeStr = decodeStr .. string.char(num); end ngx.say(

Codis 是一个分布式 Redis 解决方案

Codis源码地址:https://github.com/wandoulabs/codis 关于Codis组件可以参考:https://github.com/wandoulabs/codis/blob/master/doc/tutorial_zh.md 今天分享的这篇文章纯属个人的一些理解和使用的一些心得体会,如果错误也请朋友指出. 更重要的是为了认识一些正在使用或将要使用Codis的朋友有或多或少的帮助. 关于Codis的整体架构和功能介绍官方文档给的在详细不过了,所以我也不想在画蛇添足. 由

分布式缓存技术redis学习系列(三)——redis高级应用(主从、事务与锁、持久化)

上文<详细讲解redis数据结构(内存模型)以及常用命令>介绍了redis的数据类型以及常用命令,本文我们来学习下redis的一些高级特性. 回到顶部 安全性设置 设置客户端操作秘密 redis安装好后,默认情况下登陆客户端和使用命令操作时不需要密码的.某些情况下,为了安全起见,我们可以设置在客户端连接后进行任何操作之前都要进行密码验证.修改redis.conf进行配置. [[email protected] ~]# vi /usr/local/redis/etc/redis.conf ###

Redis主从复制(Master-Slave Replication)

案例测试: 1. Master新增网卡,修改server端配置 IP : 192.168.40.128/24 注释: bind,支持网络连接 2. 新建虚机slave,配置网络,修改redis配置 #slaveof <masterip> <masterport> slaveof 192.168.40.128 6379 # masterauth <master-password> masterauth "zcy1991" 3. 启动redis,打开日志

Redis命令拾遗三(列表List类型)

Redis五种数据类型之列表类型 Redis五种数据类型之列表类型.你可以存储一个有序的字符串列表一类数据.比如你想展示你所存储的所有文章中的前十条,当分页取下一页的时候,你也可以取接下来的十条.所以建议你维护一个文章ID的列表.其内部使用双向链表实现,这意味着在你获取一段头部和尾部的数据是极快的,但是在数据量大时获取列表中间部分的数据稍慢.因为链表通过索引访问数据.比如微信的朋友圈,我们关注的大部分只是最新的数据,所以这样的场景很合适.同时,在插入数据时,也是在左右两端插入,效率也不会受到影响

2016年5月11日摘自知乎的一些Redis大概了解

1. 知乎日报的基础数据和统计信息是用 Redis 存储的,这使得请求的平均响应时间能在 10ms 以下.其他数据仍然需要存放在另外的地方,其实完全用 Redis 也是可行的,主要的考量是内存占用.就使用经验而言,Redis 的数据结构很丰富,精心设计地话,能满足很多应用场景.至少很多时候比 MySQL 更方便 2. 单独使用Redis的话,它是成当不起数据库的任务,比如你每日活跃用户是1万人,但是你那台redis里面已经积累了50万人了(这个比例很正常),那么每次redis启动,就需要把50万

Redis百亿级Key存储方案

1 需求背景 该应用场景为AdMaster DMP缓存存储需求,DMP需要管理非常多的第三方id数据,其中包括各媒体cookie与自身cookie(以下统称admckid)的mapping关系,还包括了admckid的人口标签.移动端id(主要是idfa和imei)的人口标签,以及一些黑名单id.ip等数据. 在hdfs的帮助下离线存储千亿记录并不困难,然而DMP还需要提供毫秒级的实时查询.由于cookie这种id本身具有不稳定性,所以很多的真实用户的浏览行为会导致大量的新cookie生成,只有