POJ 1269 Intersecting Lines(线段相交,水题)

Intersecting Lines

大意:给你两条直线的坐标,判断两条直线是否共线、平行、相交,若相交,求出交点。

思路:线段相交判断、求交点的水题,没什么好说的。

struct Point{
    double x, y;
} ;
struct Line{
    Point a, b;
} A, B;

double xmult(Point p1, Point p2, Point p)
{
    return (p1.x-p.x)*(p2.y-p.y)-(p1.y-p.y)*(p2.x-p.x);
}

bool parallel(Line u, Line v)
{
    return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y));
}

Point intersection(Line u, Line v)
{
    Point ret = u.a;
    double t = ((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))/((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x += (u.b.x-u.a.x)*t, ret.y += (u.b.y-u.a.y)*t;
    return ret;
}

int T;

void Solve()
{
    scanf("%d", &T);
    printf("INTERSECTING LINES OUTPUT\n");
    while(T--)
    {
        scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &A.a.x, &A.a.y, &A.b.x, &A.b.y, &B.a.x, &B.a.y, &B.b.x, &B.b.y);
        if(parallel(A, B) && zero(xmult(A.a, B.a, B.b)))
        {
            printf("LINE\n");
        }
        else if(parallel(A, B))
        {
            printf("NONE\n");
        }
        else
        {
            Point t = intersection(A, B);
            printf("POINT %.2f %.2f\n", t.x, t.y);
        }
    }
    printf("END OF OUTPUT\n");
}

POJ 1269 Intersecting Lines(线段相交,水题),布布扣,bubuko.com

时间: 2024-12-11 01:51:33

POJ 1269 Intersecting Lines(线段相交,水题)的相关文章

POJ 1269 Intersecting Lines 直线相交判断

D - Intersecting Lines Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1269 Appoint description:  System Crawler  (2016-05-08) Description We all know that a pair of distinct points on a plane d

POJ 1269 Intersecting Lines(判断直线相交)

题目地址:POJ 1269 直接套模板就可以了...实在不想自己写模板了...写的又臭又长....不过这题需要注意的是要先判断是否有直线垂直X轴的情况. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h>

poj 1269 Intersecting Lines(判相交交点与平行)

http://poj.org/problem?id=1269 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10379   Accepted: 4651 Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in

POJ 1269 - Intersecting Lines - [平面几何模板题]

题目链接:http://poj.org/problem?id=1269 Time Limit: 1000MS Memory Limit: 10000K Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection b

POJ 1269 - Intersecting Lines 直线与直线相交

题意:    判断直线间位置关系: 相交,平行,重合 1 include <iostream> 2 #include <cstdio> 3 using namespace std; 4 struct Point 5 { 6 int x , y; 7 Point(int a = 0, int b = 0) :x(a), y(b) {} 8 }; 9 struct Line 10 { 11 Point s, e; 12 int a, b, c;//a>=0 13 Line() {

POJ 1269 Intersecting Lines【判断直线相交】

题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0)=0 (p3-p0)X(p2-p0)=0 展开后即是 (y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0 (y3-y4)x0+(x4-x3)y0+x3y4-x4y3=0 将x0,y0作为变量求解二元一次方程组. 假设有二元一次方程组 a1x+b1y+c1=0; a2x+b2y+c2=0

poj 1269 Intersecting Lines——叉积求直线交点坐标

题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么是叉积:https://blog.csdn.net/sunbobosun56801/article/details/78980467        其二维:https://blog.csdn.net/qq_38182397/article/details/80508303计算交点:    方法1:面

判断两条直线的位置关系 POJ 1269 Intersecting Lines

两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, p2, p3, p4,直线L1,L2分别穿过前两个和后两个点.来判断直线L1和L2的关系 这三种关系一个一个来看: 1. 共线. 如果两条直线共线的话,那么另外一条直线上的点一定在这一条直线上.所以p3在p1p2上,所以用get_direction(p1, p2, p3)来判断p3相对于p1p2的关

POJ 1269 Intersecting Lines (判断直线位置关系)

题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line becau