操作系统启动过程分析(二)

一, bootsect.s程序功能简要分析

  下面这段代码就是bootsect的源程序, 这是Linus Torvalds在1991年写的

!
! SYS_SIZE is the number of clicks (16 bytes) to be loaded.
! 0x3000 is 0x30000 bytes = 196kB, more than enough for current
! versions of linux
!
SYSSIZE = 0x3000
!
!	bootsect.s		(C) 1991 Linus Torvalds
!
! bootsect.s is loaded at 0x7c00 by the bios-startup routines, and moves
! iself out of the way to address 0x90000, and jumps there.
!
! It then loads ‘setup‘ directly after itself (0x90200), and the system
! at 0x10000, using BIOS interrupts.
!
! NOTE! currently system is at most 8*65536 bytes long. This should be no
! problem, even in the future. I want to keep it simple. This 512 kB
! kernel size should be enough, especially as this doesn‘t contain the
! buffer cache as in minix
!
! The loader has been made as simple as possible, and continuos
! read errors will result in a unbreakable loop. Reboot by hand. It
! loads pretty fast by getting whole sectors at a time whenever possible.

.globl begtext, begdata, begbss, endtext, enddata, endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text

SETUPLEN = 4				! nr of setup-sectors
BOOTSEG  = 0x07c0			! original address of boot-sector
INITSEG  = 0x9000			! we move boot here - out of the way
SETUPSEG = 0x9020			! setup starts here
SYSSEG   = 0x1000			! system loaded at 0x10000 (65536).
ENDSEG   = SYSSEG + SYSSIZE		! where to stop loading

! ROOT_DEV:	0x000 - same type of floppy as boot.
!		0x301 - first partition on first drive etc
ROOT_DEV = 0x306

entry _start
_start:
	mov	ax,#BOOTSEG
	mov	ds,ax
	mov	ax,#INITSEG
	mov	es,ax
	mov	cx,#256
	sub	si,si
	sub	di,di
	rep
	movw
	jmpi	go,INITSEG
go:	mov	ax,cs
	mov	ds,ax
	mov	es,ax
! put stack at 0x9ff00.
	mov	ss,ax
	mov	sp,#0xFF00		! arbitrary value >>512

! load the setup-sectors directly after the bootblock.
! Note that ‘es‘ is already set up.

load_setup:
	mov	dx,#0x0000		! drive 0, head 0
	mov	cx,#0x0002		! sector 2, track 0
	mov	bx,#0x0200		! address = 512, in INITSEG
	mov	ax,#0x0200+SETUPLEN	! service 2, nr of sectors
	int	0x13			! read it
	jnc	ok_load_setup		! ok - continue
	mov	dx,#0x0000
	mov	ax,#0x0000		! reset the diskette
	int	0x13
	j	load_setup

ok_load_setup:

! Get disk drive parameters, specifically nr of sectors/track

	mov	dl,#0x00
	mov	ax,#0x0800		! AH=8 is get drive parameters
	int	0x13
	mov	ch,#0x00
	seg cs
	mov	sectors,cx
	mov	ax,#INITSEG
	mov	es,ax

! Print some inane message

	mov	ah,#0x03		! read cursor pos
	xor	bh,bh
	int	0x10

	mov	cx,#24
	mov	bx,#0x0007		! page 0, attribute 7 (normal)
	mov	bp,#msg1
	mov	ax,#0x1301		! write string, move cursor
	int	0x10

! ok, we‘ve written the message, now
! we want to load the system (at 0x10000)

	mov	ax,#SYSSEG
	mov	es,ax		! segment of 0x010000
	call	read_it
	call	kill_motor

! After that we check which root-device to use. If the device is
! defined (!= 0), nothing is done and the given device is used.
! Otherwise, either /dev/PS0 (2,28) or /dev/at0 (2,8), depending
! on the number of sectors that the BIOS reports currently.

	seg cs
	mov	ax,root_dev
	cmp	ax,#0
	jne	root_defined
	seg cs
	mov	bx,sectors
	mov	ax,#0x0208		! /dev/ps0 - 1.2Mb
	cmp	bx,#15
	je	root_defined
	mov	ax,#0x021c		! /dev/PS0 - 1.44Mb
	cmp	bx,#18
	je	root_defined
undef_root:
	jmp undef_root
root_defined:
	seg cs
	mov	root_dev,ax

! after that (everyting loaded), we jump to
! the setup-routine loaded directly after
! the bootblock:

	jmpi	0,SETUPSEG

! This routine loads the system at address 0x10000, making sure
! no 64kB boundaries are crossed. We try to load it as fast as
! possible, loading whole tracks whenever we can.
!
! in:	es - starting address segment (normally 0x1000)
!
sread:	.word 1+SETUPLEN	! sectors read of current track
head:	.word 0			! current head
track:	.word 0			! current track

read_it:
	mov ax,es
	test ax,#0x0fff
die:	jne die			! es must be at 64kB boundary
	xor bx,bx		! bx is starting address within segment
rp_read:
	mov ax,es
	cmp ax,#ENDSEG		! have we loaded all yet?
	jb ok1_read
	ret
ok1_read:
	seg cs
	mov ax,sectors
	sub ax,sread
	mov cx,ax
	shl cx,#9
	add cx,bx
	jnc ok2_read
	je ok2_read
	xor ax,ax
	sub ax,bx
	shr ax,#9
ok2_read:
	call read_track
	mov cx,ax
	add ax,sread
	seg cs
	cmp ax,sectors
	jne ok3_read
	mov ax,#1
	sub ax,head
	jne ok4_read
	inc track
ok4_read:
	mov head,ax
	xor ax,ax
ok3_read:
	mov sread,ax
	shl cx,#9
	add bx,cx
	jnc rp_read
	mov ax,es
	add ax,#0x1000
	mov es,ax
	xor bx,bx
	jmp rp_read

read_track:
	push ax
	push bx
	push cx
	push dx
	mov dx,track
	mov cx,sread
	inc cx
	mov ch,dl
	mov dx,head
	mov dh,dl
	mov dl,#0
	and dx,#0x0100
	mov ah,#2
	int 0x13
	jc bad_rt
	pop dx
	pop cx
	pop bx
	pop ax
	ret
bad_rt:	mov ax,#0
	mov dx,#0
	int 0x13
	pop dx
	pop cx
	pop bx
	pop ax
	jmp read_track

!/*
! * This procedure turns off the floppy drive motor, so
! * that we enter the kernel in a known state, and
! * don‘t have to worry about it later.
! */
kill_motor:
	push dx
	mov dx,#0x3f2
	mov al,#0
	outb
	pop dx
	ret

sectors:
	.word 0

msg1:
	.byte 13,10
	.ascii "Loading system ..."
	.byte 13,10,13,10

.org 508
root_dev:
	.word ROOT_DEV
boot_flag:
	.word 0xAA55

.text
endtext:
.data
enddata:
.bss
endbss:

程序从entry _start开始执行

1, start标号开始:

首先将寄存器ax的值设置为0x7c00, 将as的值复制到ds段寄存器, 然后用同样的方法将es的值设置为0x9000, 然后设置cx为256, 然后再将0x7c00处的512个字节拷贝到0x9000处, 接着就跳转到go标号处继续执行.  (此时bootsect程序本身就全部被复制到了0x9000处, cs:ip指向了"0x9000 + go" 地址处)

2, go标号:

设置ds和es段寄存器指向当前段, 并设置栈段为0x9ff00, 其中栈顶指针sp指向0xFF00

3, load_setup标号:

   通过linus的注释, 可以知道这段代码的功能是通过BIOS的13号终端把磁盘的第2, 3, 4, 5扇区的程序读入到内存0x90200处, 如果读入失败, 将再次读取, 一直循环下去. 如果读入成功, 就跳到标号ok_load_setup处

4, ok_load_setup标号:

这里有一个注释: Get disk drive parameters, specifically nr of sectors/track. 意思是: 获取磁盘驱动器的一些信息, 主要是每磁道/扇区的数量.

接下来还有个注释: Print some inane message. 意思是: 打印一些无意义的信息

可以发现这是通过BIOS的10号中断实现的, 其中CX的值是要打印的字符个数, bp的值为标号msg1的地址. 然后看看msg的内容:

     

可以发现这个字符串和启动系统时显示的字符串是一样的.

然后注释写到: ok, we‘ve written the message, now we want to load the system (at 0x10000)  意思是: 我们已经写了一些信息了, 现在我们想要载入system模块到内存0x10000处

接下来就是载入system模块的代码了

然后注释写到: after that (everyting loaded), we jump to the setup-routine loaded directly after the bootblock  

意思是: 所有的程序都加载完毕后, 我们就要跳到setup模块去了. 于是就执行 jmpi    0, SETUPSEG

到此, bootsect的任务就完成了.

二, 总结启动过程

1, 刚开始的时候, CS:ip指向0x7c00处, 也就是bootsect程序的第一条指令处

  

2, 接下来bootsect将自身复制到0x9000处

  

3, 载入setup模块

  

4, 载入system模块到0x10000处

  

5, 跳转到setup模块执行

三, 修改bootsect.s

1, 目标

  修改bootsect.s程序, 不必载入setup和system模块, 删除与这些功能相关的代码, 仅仅让bootsect执行的时候显示一条信息:

      AXF OS is bootding, my name is AiXiangfei …

2, 实现

.globl begtext, begdata, begbss, endtext, enddata, endbss
.text
begtext:
.data
begdata:
.bss
begbss:
.text

BOOTSEG = 0x07c0
ROOT_DEV = 0x306

entry _start
_start:
! 打印消息

    mov    ah,#0x03        ! 读取光标位置
    xor    bh,bh
    int    0x10

    mov    cx,#50
    mov    bx,#0x0007        ! page 0, attribute 7 (normal)
    mov    bp,#msg1
    mov ax,#BOOTSEG
    mov    es,ax
    mov    ax,#0x1301        ! write string, move cursor
    int    0x10            ! 10号中断,打印字符串

s:
    mov    cx,#1            ! 无限循环
    add cx,#1
    loop s

msg1:
    .byte 13,10
    .ascii "AXF OS is booting, my name is AiXiangfei ... "
    .byte 13,10,13,10

.org 508
root_dev:
    .word ROOT_DEV
boot_flag:
    .word 0xAA55

.text
endtext:
.data
enddata:
.bss
endbss:

3, 运行截图

  

时间: 2024-10-02 09:43:37

操作系统启动过程分析(二)的相关文章

操作系统启动过程分析(一)

一, 系统启动之前 我们知道, 计算机中有各种内存设备, 比如内存条RAM, 主板上的ROM, 显存等, 这些设备有的时候都是独立的, 但在CPU看来, 这些内存是连续的, 所有的内存设备都可以组成一个"大内存", 大概可以用下面的图来描述: 其中RAM在最底层, 主板的ROM在最顶层, 而显存等其它外围设备的内存位于中间. 主板的ROM中装有BIOS(基本输入输出系统), 大小一般都是64KB. 当然, 不同的计算机, 内存大小不一样, 所以BIOS所在的区域是从哪个地方开始, 都是

linux操作系统启动流程一

linux系统的启动流程: POST --> BootSequence(BIOS) --> bootloader --> kernel [-->ramfs] --> rootfs[ro]--> /sbin/init --> 设定默认运行级别 --> 进行系统初始化 --> 并行执行ctrl+alt+del热键功能定义,系统服务的开启和关闭,电源的管理,dbus管理 -->登录提示符 在我们linux系统的启动过程中存在着这样的启动流程,下面我们一

[原创]Linux系统启动过程分析

经过对Linux系统有了一定了解和熟悉后,想对其更深层次的东西做进一步探究.这当中就包括系统的启动流程.文件系统的组成结构.基于动态库和静态库的程序在执行时的异同.协议栈的架构和原理.驱动程序的机制等等. 本人在综合了现有网上大家智慧的基础上,结合对2.6.32的内核代码的研读,基于CentOS 6.0系统对Linux的启动流程做了些分析.由于才疏学浅,知识所限,有些地方分析不妥之处还请各位高手不吝赐教. OK,我们言归正传.对于一台安装了Linux系统的主机来说,当用户按下开机按钮时,一共要经

Android4.2.2多媒体架构MediaPlay的创建过程分析(二):解析器的创建

本文均属自己阅读源码的点滴总结,转账请注明出处谢谢. 欢迎和大家交流.qq:1037701636 email: [email protected] 在上一文中,我们分析到setDataSource_pre()函数最终实际返回的是StagefrightPlayer类(class StagefrightPlayer : public MediaPlayerInterface). 1 .继续分析setDataSource 函数: // now set data source setDataSource

Linux操作系统启动管理器-grub

一.GRUB简介 GRUB(GRand Unified Bootloader简称"GRUB")是一个来自GNU项目的多操作系统启动程序.GRUB是多启动规范的实现,它允许用户可以在计算机内同时拥有多个操作系统,并在计算机启动时选择希望运行的操作系统.GRUB可用于选择操作系统分区上的不同内核,也可用于向这些内核传递启动参数. =================================================================================

浅谈-LINUX 操作系统启动过程

LINUX 操作系统启动过程 通过一段时间的学习已经对linux有了一定的了解,接下来就开始研究一下linux 操作系统的启动过程吧.当然这是为了让大家比较容易发现linux启动过程中容易发生问题的地方以及解决办法. 目录 一.简述 二.详解 1.BIOS加电自检 2.读取MBR 三.加载内核 1.Grub引导分为三个阶段 2.Stage1.5阶段存在的原因 3.详解三阶段引导过程 四.调用init进程 1.init的功能作用 2.init初始化流程 3.init 执行 run-level 的各

delphi 操作 XML (二)

在装有Win7 32位系统的台式机上 先卸载旧驱动,再重新安装. 对设备管理器里的U转串口设备从本地更新驱动,选择下图文件 系统弹出红色提示框(是否安装XXXX驱动),选择安装,随后该设备由无法启动变为工作正常. 在Win8 64位系统上 安装驱动后,出现下图情况,设备无法启动(错误代码10) 选择08年的驱动后,串口恢复正常. 总结 这些驱动有很多不兼容的,特别是在高级Windows版本或64位系统上,解决的思路就是多尝试安装各种版本,并根据串口状态调整安装策略. delphi 操作 XML

操作系统启动区的基本知识

操作系统启动过程在计算机开机时,boot被自动执行,指引CPU把操作系统从大容量存储器中传送到主存储器的易失区.一旦操作系统放到了主存储器中,boot要求CPU执行一条转移指令,转到这个存储区域,在这个时候,操作系统接管并且开始控制整个机器的活动. 计算机的存储器分为 大容量存储器(通常为硬盘)和 主存储器(即 内存),操作系统(如 windows.UNIX. Linux. Mac OS)安装在大容量存储器上,而主存储器又分为两部分:能够永久保存数据的ROM(Read Only Memory)和

总结文件操作函数(二)-C语言

格式化读写: #include <stdio.h> int printf(const char *format, ...);                   //相当于fprintf(stdout,format,-); int scanf(const char *format, -); int fprintf(FILE *stream, const char *format, ...);      //中间的参数为写入文件的格式 int fscanf(FILE *stream, const