1.设\(a,b,c>0\),\(abc=1\),求证:\(a^2+b^2+c^2\leqslant a^3+b^3+c^3\)。
解:不妨设\(a\geqslant b\geqslant c\),由切比雪夫不等式,有\(a^3+b^3+c^3\geqslant \frac{(a+b+c)(a^2+b^2+c^2)}{3}\geqslant a^2+b^2+c^2\)。
2.设\(a,b,c>0\),\(a^2+b^2+c^2=1\),求证:\(\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\geqslant \frac{3}{2}\)。
解:\(\because\sum \frac{a}{1-a^2}=\sum \frac{a^2}{a(1-a^2)}\\\because[a(1-a^2)]^2=\frac{1}{2}\cdot 2a^2\cdot (1-a^2)\cdot (1-a^2)\leqslant \frac{1}{2}\cdot (\frac{2}{3})^3=\frac{4}{27}\)
\(\therefore a(1-a^2)\leqslant \frac{2}{3\sqrt{3}}\)
同理,\(b(1-b^2)\leqslant \frac{2}{3\sqrt{3}},c(1-c^2)\leqslant \frac{2}{3\sqrt{3}}\)
\(\therefore LHS\geqslant \sum \frac{a^2}{\frac{2}{3\sqrt{3}}}=\frac{3\sqrt{3}}{2}\)
3.设\(\alpha,\beta,\gamma\in(0,\frac{\pi}{4})\),且\(\alpha+\beta+\gamma=\frac{\pi}{2}\),求证:\(tan^2\alpha+tan^2\beta+tan^2\gamma\leqslant 2\)。
解:考虑局部不等式\(tan^2 x\leqslant \frac{4}{\pi}x\),其中\(x\in(0,\frac{\pi}{4})\),求导之后易得本式正确性。
\(\therefore tan^2\alpha\leqslant \frac{4}{\pi}\alpha,tan^2\beta\leqslant \frac{4}{\pi}\beta,tan^2\gamma\leqslant \frac{4}{\pi}\gamma\)
三式相加,即可得\(tan^2\alpha+tan^2\beta+tan^2\gamma\leqslant 2\)
原文地址:https://www.cnblogs.com/dummyummy/p/9248603.html