题目链接:点击打开链接
把边权化成点权,每个点的点权表示父边的边权。
求path(x, y)
把x access后,则 x 就变成了根所在的splay , 且x是这条链上深度最大的节点。(下面对于根所在的splay称为splay_root)
那么y沿着父节点爬上去,当父节点 fa_y 坐落在splay_root上时,fa_y深度一定比x小,即一定在x的上方。
再把y access上去, 在y最后要和splay_root合并之前, 把fa_y splay一下,
那么path(x, y) 的一部分就是 fa_y ->x : fa_y->splay(), return paht(fa_y, x) => fa_y->ch[1]->max
另一部分为 y一直access上来的那条链, splay->max
#include <iostream> #include <fstream> #include <string> #include <time.h> #include <vector> #include <map> #include <queue> #include <algorithm> #include <stack> #include <cstring> #include <cmath> #include <set> #include <vector> using namespace std; template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if (x>9) pt(x / 10); putchar(x % 10 + '0'); } typedef long long ll; typedef pair<int, int> pii; const int N = 30005; const int inf = 10000000; struct Node *null; struct Node{ Node *fa, *ch[2]; int size; int val, ma, sum, id; bool rev; inline void put(){ printf("%d:id, %d,%d,%d (%d,%d) fa:%d \n", id, val, ma, sum, ch[0]->id, ch[1]->id, fa->id); } void debug(Node *x){ if (x == null)return; x->put(); if (x->ch[0] != null)putchar('L'), debug(x->ch[0]); if (x->ch[1] != null)putchar('r'), debug(x->ch[1]); } inline void clear(int _val, int _id){ fa = ch[0] = ch[1] = null; size = 1; rev = 0; id = _id; val = ma = sum = _val; } inline void add_val(int _val){ val += _val; sum += _val; ma = max(ma, val); } inline void push_up(){ size = 1 + ch[0]->size + ch[1]->size; sum = ma = val; if (ch[0] != null) { sum += ch[0]->sum; ma = max(ma, ch[0]->ma); } if (ch[1] != null){ sum += ch[1]->sum; ma = max(ma, ch[1]->ma); } } inline void push_down(){ if (rev){ flip(); ch[0]->rev ^= 1; ch[1]->rev ^= 1; } } inline void setc(Node *p, int d){ ch[d] = p; p->fa = this; } inline bool d(){ return fa->ch[1] == this; } inline bool isroot(){ return fa == null || fa->ch[0] != this && fa->ch[1] != this; } inline void flip(){ if (this == null)return; swap(ch[0], ch[1]); rev ^= 1; } inline void go(){//从链头开始更新到this if (!isroot())fa->go(); push_down(); } inline void rot(){ Node *f = fa, *ff = fa->fa; int c = d(), cc = fa->d(); f->setc(ch[!c], c); this->setc(f, !c); if (ff->ch[cc] == f)ff->setc(this, cc); else this->fa = ff; f->push_up(); } inline Node*splay(){ go(); while (!isroot()){ if (!fa->isroot()) d() == fa->d() ? fa->rot() : rot(); rot(); } push_up(); return this; } inline Node* access(){//access后this就是到根的一条splay,并且this已经是这个splay的根了 for (Node *p = this, *q = null; p != null; q = p, p = p->fa){ p->splay()->setc(q, 1); p->push_up(); } return splay(); } inline Node* find_root(){ Node *x; for (x = access(); x->push_down(), x->ch[0] != null; x = x->ch[0]); return x; } void make_root(){ access()->flip(); } void cut(){//把这个点的子树脱离出去 access(); ch[0]->fa = null; ch[0] = null; push_up(); } void cut(Node *x){ if (this == x || find_root() != x->find_root())return; else { x->make_root(); cut(); } } void link(Node *x){ if (find_root() == x->find_root())return; else { make_root(); fa = x; } } }; Node pool[N], *tail; Node *node[N], *ee[N]; int n, q; void debug(Node *x){ if (x == null)return; x->put(); debug(x->ch[0]); debug(x->ch[1]); } inline int ask(Node *x, Node *y){ x->access(); for (x = null; y != null; x = y, y = y->fa){ y->splay(); if (y->fa == null)return max(y->ch[1]->ma, x->ma); y->setc(x, 1); y->push_up(); } } struct Edge{ int from, to, dis, id, nex; }edge[N << 1]; int head[N], edgenum; void add(int u, int v, int dis, int id){ Edge E = { u, v, dis, id, head[u] }; edge[edgenum] = E; head[u] = edgenum++; } bool vis[N]; void bfs(){ fill(vis + 1, vis + 1 + n, false); queue<int>q; q.push(1); vis[1] = true; while (!q.empty()){ int u = q.front(); q.pop(); for (int i = head[u]; ~i; i = edge[i].nex){ int v = edge[i].to; if (vis[v])continue; vis[v] = true; q.push(v); ee[edge[i].id] = node[v]; node[v]->val = edge[i].dis; node[v]->push_up(); node[v]->fa = node[u]; } } } int main(){ int T; rd(T); while (T--){ rd(n); fill(head + 1, head + n + 1, -1); edgenum = 0; tail = pool; null = tail++; null->clear(-inf, 0); null->size = 0; for (int i = 1; i <= n; i++) { node[i] = tail++; node[i]->clear(0, i); } for (int i = 1, u, v, d; i < n; i++){ rd(u); rd(v); rd(d); add(u, v, d, i); add(v, u, d, i); } bfs(); char str[10]; int u, v; while (true){ scanf("%s", str); if (str[0] == 'D')break; rd(u); rd(v); if (str[0] == 'Q')pt(ask(node[u], node[v])), putchar('\n'); else { ee[u]->splay()->val = v; ee[u]->push_up(); } } } return 0; } /* */
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-11-17 13:18:29