Project Euler 80:Path sum: two ways 路径和:两个方向

Path sum: two ways

In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by only moving to the right and down, is indicated in bold red and is equal to 2427.

         
131 673 234 103 18
201 96 342 965 150
630 803 746 422 111
537 699 497 121 956
805 732 524 37 331

Find the minimal path sum, in matrix.txt (right click and “Save Link/Target As…”), a 31K text file containing a 80 by 80 matrix, from the top left to the bottom right by only moving right and down.



路径和:两个方向

在如下的5乘5矩阵中,从左上方到右下方始终只向右或向下移动的最小路径和为2427,由标注红色的路径给出。

         
131 673 234 103 18
201 96 342 965 150
630 803 746 422 111
537 699 497 121 956
805 732 524 37 331

在这个31K的文本文件matrix.txt(右击并选择“目标另存为……”)中包含了一个80乘80的矩阵,求出从该矩阵的左上方到右下方始终只向右和向下移动的最小路径和。

解题

这个题目很简单的

对第0列和第0行的数直接向下加

第0列:data[i][0] = data[i][0] + data[i-1][0]  for i in 1:row - 1

第0行: data[0][i] = data[0][i] + data[0][i-1] for i in 1:col-1

其他情况

for i in 1:row -1

for j in 1:col-1

data[i][j] = data[i][j] + min(data[i-1][j],data[i][j-1])

最后元素data[row-1][col-1]就是最小路径的值。

Python

import time ;
import numpy as np

def run():
    filename = ‘E:/java/projecteuler/src/Level3/p081_matrix.txt‘
    data = readData(filename)
    Path_Sum(data)

def Path_Sum(data):
    row,col = np.shape(data)
    for i in range(1,row):
        data[0][i] = data[0][i]+data[0][i-1]
        data[i][0] = data[i][0] + data[i-1][0]
    for i in range(1,row):
        for j in range(1,col):
            data[i][j] += min(data[i-1][j],data[i][j-1])
    print data[row-1][col-1] 

def readData(filename):
    fl = open(filename)
    data =[]
    for row in fl:
        row = row.split(‘,‘)
        line = [int(i) for i in row]
        data.append(line)
    return data
if __name__==‘__main__‘:
    t0 = time.time()
    run()
    t1 = time.time()
    print "running time=",(t1-t0),"s"

# 427337
# running time= 0.00799989700317 s
            

参考博客中的读取文件,这个读取文件的思想很好的,自己对于读取文件还不是很熟悉

上个Python程序是按照左上到右下走的

下面java的是按照右下向左上走的

package Level3;

import java.awt.List;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;

public class PE081{

    static int[][] grid;
    static void run() throws IOException{
        String filename = "src/Level3/p081_matrix.txt";
        String lineString = "";
        ArrayList<String> listData = new ArrayList<String>();
        BufferedReader data = new BufferedReader(new FileReader(filename));
        while((lineString = data.readLine())!= null){
            listData.add(lineString);
        }
        // 分配大小空间的 定义的grid 没有定义大小
        assignArray(listData.size());
        // 按照行添加到数组grid中
        for(int index = 0,row_counter=0;index <=listData.size() - 1;++index,row_counter++){
            populateArray(listData.get(index),row_counter);
        }
        System.out.println(Path_min(grid));

    }
    public static int Path_min(int[][] data){
        int size = data.length;
        for(int i=size -2;i>=0;--i){
            data[i][size-1] += data[i+1][size-1];
            data[size-1][i] += data[size-1][i+1];
        }
        for( int index = size -2;index >=0;index--){
            for(int innerIndex = size -2;innerIndex >=0;innerIndex--){
                data[index][innerIndex] += Math.min(data[index+1][innerIndex],
                        data[index][innerIndex+1]);
            }
        }
        return data[0][0];
    }
    // 每行的数据添加到数组中
    public static void populateArray(String str,int row){
        int counter = 0;
        String[] data = str.split(",");
        for(int index = 0;index<=data.length -1;++index){
            grid[row][counter++] = Integer.parseInt(data[index]);
        }
    }
    public static void assignArray(int no_of_row){
        grid = new int[no_of_row][no_of_row];
    }

    public static void main(String[] args) throws IOException{
        long t0 = System.currentTimeMillis();
        run();
        long t1 = System.currentTimeMillis();
        long t = t1 - t0;
        System.out.println("running time="+t/1000+"s"+t%1000+"ms");
//        427337
//        running time=0s38ms
    }
}
时间: 2024-11-04 10:31:34

Project Euler 80:Path sum: two ways 路径和:两个方向的相关文章

Project Euler 83:Path sum: four ways 路径和:4个方向

Path sum: four ways NOTE: This problem is a significantly more challenging version of Problem 81. In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by moving left, right, up, and down, is indicated in bold red an

【LeetCode-面试算法经典-Java实现】【064-Minimum Path Sum(最小路径和)】

[064-Minimum Path Sum(最小路径和)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path. Note: You can only move either

Leetcode:Minimum Path Sum 矩形网格最小路径和

Minimum Path Sum: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path. Note: You can only move either down or right at any point in time. 解题分析: 每次只能向下或者向

Project Euler:Problem 82 Path sum: three ways

The minimal path sum in the 5 by 5 matrix below, by starting in any cell in the left column and finishing in any cell in the right column, and only moving up, down, and right, is indicated in red and bold; the sum is equal to 994. ????????13120163053

[LeetCode] Binary Tree Maximum Path Sum(最大路径和)

Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. For example:Given the below binary tree, 1 / 2 3 Return 6. 题目意思很简单,就是给定一棵二叉树,求最大路径和.path 可以从任意 node 开始,到任意 node 结束. 这道题在 LeetCode 上的通过率只有 20% 多一点,并被标记

Path Sum II 二叉树路径之和之二

Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum. For example:Given the below binary tree and sum = 22, 5 / 4 8 / / 11 13 4 / \ / 7 2 5 1 return [ [5,4,11,2], [5,8,4,5] ] 这道二叉树路径之和在之前的基础上又需要找出路径 (可

36.Minimum Path Sum(最小路径和)

Level: ??Medium 题目描述: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path. Note: You can only move either down or right at any point in time. Example: In

Project Euler 86:Cuboid route 长方体路径

Cuboid route A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the opposite corner. By travelling on the surfaces of the room the shortest “straight line” distance from S to F is 10 and the path is shown o

LeetCode 112. Path Sum (二叉树路径之和)

Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. For example:Given the below binary tree and sum = 22, 5 / 4 8 / / 11 13 4 / \ 7 2 1 return true, as t