UVa 11582 - Colossal Fibonacci Numbers!(数论)

链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2629

题意:

输入两个非负整数a、b和正整数n(0≤a,b<2^64,1≤n≤1000),你的任务是计算f(a^b)除以n的余数。
其中f(0)=0,f(1)=1,且对于所有非负整数i,f(i+2)=f(i+1)+f(i)。

分析:

所有计算都是对n取模的,设F(i)=f(i)%n。不难发现,当二元组(F(i), F(i+1))出现重复时,整个序列就开始重复。
多久会出现重复呢?因为余数最多n种,所以最多n*n项就会出现重复。实际测试出最多3001项左右就会出现重复。
所以只需计算出周期,然后算出F(a^b)对应于其中的哪一项即可。

代码:

 1 #include <cstdio>
 2
 3 typedef unsigned long long ULL;
 4 const int UP = 1000 + 5;
 5 int f[UP][UP*3], period[UP];
 6
 7 int qmod(ULL a, ULL b, ULL n) { // 快速幂模
 8     a %= n;
 9     ULL res = 1;
10     while(b) {
11         if(b & 1) res = res * a % n;
12         b >>= 1;
13         a = a * a % n;
14     }
15     return res;
16 }
17
18 int main() {
19     period[1] = 1;
20     for(int n = 2; n <= 1000; n++) {
21         f[n][0] = 0;  f[n][1] = 1;
22         for(int i = 2; ; i++) {
23             f[n][i] = (f[n][i-1] + f[n][i-2]) % n;
24             if(f[n][i-1] == 0 && f[n][i] == 1) {
25                 period[n] = i - 1;
26                 break;
27             }
28         }
29     }
30
31     int T, n;
32     ULL a, b;
33     scanf("%d", &T);
34     while(T--) {
35         scanf("%llu%llu%d", &a, &b, &n);
36         int p = qmod(a, b, period[n]);
37         printf("%d\n", f[n][p]);
38     }
39     return 0;
40 }

原文地址:https://www.cnblogs.com/hkxy125/p/8819861.html

时间: 2024-10-07 13:18:17

UVa 11582 - Colossal Fibonacci Numbers!(数论)的相关文章

UVA 11582 Colossal Fibonacci Numbers!(数论)

 题意:输 入两个非负整数a.b和正整数n(0<=a,b<=2^64,1<=n<=1000),让你计算f(a^b)对n取模的值,其中f(0) = 0,f(1) =  1:且对任意非负整数i,f(i+2)= f(i+1)+f(i). 思路:因为斐波那契序列要对n取模,余数只有n种,所以最多n^2项序列就开始重复,所以问题转化成了求周期然后大整数取模. #include<cstdio> #include<cstring> #include<cmath&

UVA 11582 Colossal Fibonacci Numbers!(打表+快速幂)

Colossal Fibonacci Numbers! The i'th Fibonacci number f (i) is recursively defined in the following way: f (0) = 0 and f (1) = 1 f (i+2) = f (i+1) + f (i)  for every i ≥ 0 Your task is to compute some values of this sequence. Input begins with an int

UVA 11582 Colossal Fibonacci Numbers! 找循环节

注意n=1的情况 #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <climits> #include <string> #include <iostream> #include <map> #include <cstdlib> #include <list> #inc

UVA 11582 Colossal Fibonacci Numbers! 数学

n比较小,最多n*n就回出现循环节.... Colossal Fibonacci Numbers! Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Description Problem F: Colossal Fibonacci Numbers! The i'th Fibonacci number f (i) is recursively defined in the

UVa 11582 Colossal Fibonacci Numbers! 【大数幂取模】

题目链接:Uva 11582 [vjudge] 题意 输入两个非负整数a.b和正整数n(0<=a,b<=2^64,1<=n<=1000),让你计算f(a^b)对n取模的值,当中f(0) = 0,f(1) =  1.且对随意非负整数i.f(i+2)= f(i+1)+f(i). 分析 全部的计算都是对n取模.设F(i) =f(i)mod n, 非常easy发现,F(x)是具有周期性的,由于对N取模的值最多也就N个,当二元组(F(i-1),F(i))反复的时候.整个序列也就反复了.周期i

UVA 11582 - Colossal Fibonacci Numbers!(数论)(分治法幂取模)

巨大的斐波那契数! 题目大意:斐波那契数列f[N],给你a,b,n,求f[a^b]%n. 思路:数论题.f[a^b]%n是有周期的,我们求出来这个周期后就可以将简化成f[(a%周期)^b]%周期运用分治法幂取模. 注意用unsigned long long(貌似是 long long的二倍),不然会溢出,又学了一招... 不知道哪的bug,一直改不对,一直,后来捡来别人的和自己一样的代码一改就对了,,, #include<iostream>//UVA #include<cstdio>

UVA - 11582 Colossal Fibonacci Numbers! (巨大的斐波那契数!)

题意:输入两个非负整数a.b和正整数n(0<=a,b<264,1<=n<=1000),你的任务是计算f(ab)除以n的余数,f(0) = 0, f(1) = 1,且对于所有非负整数i,f(i + 2) = f(i + 1) + f(i). 分析: 1.对于某个n取余的斐波那契序列总是有周期的,求出每个取值的n下的斐波那契序列和周期. 2.ab对T[n]取余,即可确定对n取余的斐波那契序列中f(ab)的位置. #pragma comment(linker, "/STACK:

UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵快速幂,输出等了几秒钟才输出完,肯定会超时.因为所有计算都是要取模的,设F[i]=f[i] mod n.F[0]=F[1]=1.只要出现F[i]=F[i+1]=1,那么整个序列就会重复.例如n=3,则序列为1,1,2,0,2,2,1,0,1,1……第九项和第十项都等于1,所以之后的序列都会重复. 至

UVA - 11582 Colossal Fibonacci Numbers!循环节

找Fn =( Fn-1 + Fn-2 ) mod n 的循环节 暴力找即可 1 #include <cstdio> 2 #include <iostream> 3 #include <cstring> 4 typedef unsigned long long ll; 5 using namespace std; 6 const int MAXN = 1023; 7 ll f[MAXN][MAXN*10]; 8 int circle[MAXN]; 9 10 void in