UOJ #218. 【UNR #1】火车管理

http://uoj.ac/problem/218

维护一颗主席树

查询入栈相当于区间修改,弹栈相当于返回历史版本

维护区间求和

原文地址:https://www.cnblogs.com/sssy/p/8322124.html

时间: 2024-11-07 20:29:32

UOJ #218. 【UNR #1】火车管理的相关文章

UOJ#218. 【UNR #1】火车管理 线段树 主席树

原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和的线段树上完成这个问题. 于是本题的重点转到了如何求新的栈顶. 考虑用一个主席树维护一下每一个时刻每一个位置的栈顶元素的进栈时间,那么新的栈顶就是 当前位置栈顶的进栈时间-1 这时候的栈顶元素,然后这个东西也可以用我们维护的进栈时间来得到,所以我们只需要弄一个支持区间覆盖单点查询历史版本的主席树:这

UOJ 218 火车管理

http://uoj.ac/problem/218 思路:建立一个可持久化线段树,代表这个位置的火车是哪辆,然后再弄一个线段树维护答案. 如果询问,直接询问线段树. 如果区间压入,直接在主席树上面压入,然后更新线段树答案 如果弹出,那么直接找主席树当前位之前的火车是那辆,然后修改线段树答案,再修改当前主席树答案. 改题的时候蜜汁错误.. #include<cstdio> #include<cmath> #include<cstring> #include<iost

[UOJ#128][BZOJ4196][Noi2015]软件包管理器

试题描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置.Debian/Ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器. 你决定设计你自己的软件包管理器.不可避免地,你要解决软件包之间的依赖问题.如果软件包A依赖软件包B,那

UOJ——【UNR #1】争夺圣杯

1.题意:给一个序列,枚举长度x,然后在这个序列中所有长度为x的区间,我们求出这些区间的最大值之和并取模,最后将所有的异或起来就好啦 2.分析:听说好多人写的O(nlogn) ,特来写一发O(n) 的算法骗访问量 话说这个东西,我们对于每一个点,设这个点的值是max,我们可以求出他影响的所有区间,这个用单调栈解决即可,也就是说求出左边和右边第一个比这个点大的值的位置,设左边那个哪个位置是i,右边那个位置是j,那么我们就能得到这些区间啦,然后我们就可以随便写写就A了 ,这明显是不能AC的,那我们考

UNR #1 题解

虽然题解讲的很清楚...但还是再写一遍骗一点访问量QAQ A. 争夺圣杯 还是想说一下,这题是原题啊...想做的人可以戳codechef上的MTMXSUM(懒得贴链接了,套了个壳,不过正常人应该都能看得出来) 显然异或输出没什么奇怪的性质... 考虑一个元素a[x]在哪些区间中会成为最大值,我们可以用单调栈找出前面比这个元素大的第一个元素a[l],右边大的第一个元素a[r]. 考虑这个元素对每一长度的贡献,设p=x-l,q=r-x,那么对于区间[s,t],只有当l<s<=x,x<=t&l

东北育才10天大总结

老师们 Scanf的嗓门照例是最大的.恩. “我是山里的孩子……小的时候背书,整个山头都听得见……” 有一个哈师大附中的竞赛教练很……怎么说呢?接地气好了. Scanf说东北人很耿直,似乎确实是这样的.衡水的教练早就被遣返了…… “他啊,监考去了!” 虽然他不在,但还是不还手机.让衡水的人天天在电脑上颓废…… Scanf不在,你看我们就很老实.他到处“乱”玩,甚至跑到了国境线边,连火车票都忘了买,坐高铁去,乘绿皮火车回,路过长白山就去玩了一趟,结果暴风雪逼得他去吃“暴辣”的烤鱿鱼. “我看<三八

大数据学习-1 在阿里云上集成6台云服务器

一.为什么要大数据学习? 这是一个大数据的时代,一个企业只有掌握了大数据才能把握住市场的命脉,一个人掌握了大数据就可以比较轻松的向机器学习.人工智能等方向发展.所以我们有必要去掌握大数据的技术同时也关注大数据的发展趋势,不能裹足不前. 二.关于本专题的学习 作为一个普通本科大学生,在校的大数据学习比较的"水",普通大学嘛,大家都懂.在一个就是编程实战方向上的东西本来就该靠自学,而不是靠别人去教.我觉得大数据的学习是一个缓慢的过程,需要半年的时间去学习.我想在大二结束差不多就可以完成大数

UOJ #390. 【UNR #3】百鸽笼

UOJ #390. [UNR #3]百鸽笼 题目链接 看这道题之前先看一道相似的题目 [PKUWC2018]猎人杀. 考虑类似的容斥: 我们不妨设处理\(1\)的概率. 我们另集合\(T\)中的所有鸽笼都在\(1\)变空之前不为空的,其它的鸽笼随便.要做到这一点,我们只需要令每个\(T\)集合中的鸽笼容量\(--\)就行了.然后我们用背包背出所有序列的方案数(不包括\(1\)),然后在将\(1\)插入序列中.插入时,将\(w_i-1\)个随便插入,然后再将一个放在序列末尾. 具体实现时,我们可以

【UOJ#386】【UNR#3】鸽子固定器(贪心)

[UOJ#386][UNR#3]鸽子固定器(贪心) 题面 UOJ 题解 一个不难想到的暴力做法是把东西按照\(s\)排序,这样子我们枚举极大值和极小值,那么我们选择的一定是这一段之间\(v\)最大的那\(m\)个东西. 考虑优化这个过程,我们枚举右端点,左端点向左移动,每次插入一个元素,用堆来维护选择的过程.这样子复杂度可以做到\(O(n^2logn)\). 考虑继续优化这个过程,首先如果右端点一旦被弹出堆这个过程就可以终止了,这个很显然. 通过这个过程,我们也可以明白如果选择的个数不超过\(m