machine learning 之 Neural Network 1

整理自Andrew Ng的machine learning课程week 4.

目录:

  • 为什么要用神经网络
  • 神经网络的模型表示 1
  • 神经网络的模型表示 2
  • 实例1
  • 实例2
  • 多分类问题

1、为什么要用神经网络

当我们有大量的features时:如$x_1, x_2,x_3.......x_{100}$

假设我们现在使用一个非线性的模型,多项式最高次为2次,那么对于非线性分类问题而言,如果使用逻辑回归的话:

$g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1x_2+\theta_4x_1^2x_2+........)$

大约有5000($\frac{n^2}{2}$)个特征,也就是说O(n2),那么当多项式的次数为3次时,结果更加的大,O(n3)

这样多的特征带来的后果是:1.过拟合的可能性增大     2.计算的耗费很大

举个更加极端的例子,在图像问题中,每一个像素就相当于一个特征,仅对于一个50*50(已经是非常小的图片了)的图像而言,如果是灰度图像,就有2500个特征了,RGB图像则有7500个特征,对于每个特征还有255个取值;

对于这样的一个图像而言,如果用二次特征的话,就有大概3百万个特征了,如果这时候还用逻辑回归的话,计算的耗费就相当的大了

这个时候我们就需要用到neural network了。

2、神经网络的模型表示1

神经网络的基本结构如下图所示:

$x_0, x_1,x_2,x_3$是输入单元,$x_0$又被称为bias unit,你可以把bias unit都设置为1;

$\theta$是权重(或者直接说参数),连接输入和输出的权重参数;

$h_\theta(x)$是输出的结果;

对于以下的网络结构,我们有以下定义和计算公式:

$a_i^{(j)}$:在第j层的第i个单元的activation(就是这个单元的值),中间层我们称之为hidden layers

$s_j$:第j层的单元数目

$\Theta^{(j)}$:权重矩阵,控制了从第j层到第j+1层的映射关系,$\Theta^{(j)}$的维度为$s_{j+1}*(s_j+1)$

对于$a^{(2)}$的计算公式为:

$a_1^{(2)}=g(\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3})$

$a_2^{(2)}=g(\theta_{20}^{(1)}x_0+\theta_{21}^{(1)}x_1+\theta_{22}^{(1)}x_2+\theta_{23}^{(1)}x_3)$

$a_3^{(2)}=g(\theta_{30}^{(1)}x_0+\theta_{31}^{(1)}x_1+\theta_{32}^{(1)}x_2+\theta_{33}^{(1)}x_3)$

那么同理,

$h_\Theta(x)=a_1^{(3)}=g(\theta_{10}^{(2)}a_0^{(2)}+\theta_{11}^{(2)}a_1^{(2)}+\theta_{12}^{(2)}a_2^{(2)}+\theta_{13}^{(2)}a_3^{(2)})$

3、神经网络模型表示2

forward propagation: vectorized implementation

对以上的公式的向量化表示:

$z_1^{(2)}=\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3}$

$a_1^{(2)}=g(z_1^{(2)})$

写成向量即为:

$ a^{(1)}=x= \begin{bmatrix} x_0 \\  x_1 \\ x_2 \\ x_3  \end{bmatrix} $          $ z^{(2)}=\begin{bmatrix} z^{(2)}_1 \\ z^{(2)}_1 \\ z^{(2)}_1 \end{bmatrix} $          $\Theta^{(1)}= \begin{bmatrix} \theta^{(1)}_{10} & \theta^{(1)}_{11} & \theta^{(1)}_{12} & \theta^{(1)}_{13} \\ \theta^{(1)}_{20} & \theta^{(1)}_{21} & \theta^{(1)}_{22} & \theta^{(1)}_{23} \\ \theta^{(1)}_{30} & \theta^{(1)}_{31} & \theta^{(1)}_{32} & \theta^{(1)}_{33} \\ \end{bmatrix}$

因此:

$z^{(2)}=\Theta^{(1)}a^{(1)}$

$a^{(2)}=g(z^{(2)})$

加上$a^{(2)}_0=1$:

$z^{(3)}=\Theta^{(2)}a^{(2)}$

$a^{(3)}=h_\Theta(x)=g(z^{(3)})$

以上即为向量化的表达方式。

对于每个$a^{(j)}$都会学习到不同的特征

4、实例1

先来看一个分类问题,XOR/XNOR,对于$x_1,x_2 \in {0,1}$,当x1和x2不同(0,1或者1,0)时,y为1,相同时y为0;y=x1 xnor n2

对于一个简单的分类问题 AND:

可以用如下的神经网络结构得到正确的分类结果

同样的,对于OR,我们可以设计出以下的网络,也可以得到正确的结果

5、实例2

接着上面的例子,对于 NOT,以下网络结构可以进行分类:

我们回到示例中最初提到的问题:XNOR

当我们组合上述简单例子(AND、OR、NOT)时,就可以得到解决XNOR问题的正确的网络结构:

6、多分类问题

在neural network中的多分类问题的解决,也是用的one vs all的思想,在二分类问题中,我们是输出不是0就是1,而在多分类问题中,输出的结果是一个one hot向量,$h_\Theta(x) \in R^k$,k代表类别数目

比如说对于一个4类问题,输出可能为:

类别1:$\begin{bmatrix}  0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, 类别2:$\begin{bmatrix}  0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, 类别3:$\begin{bmatrix}  0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ , 等等

你不可以把$h_\Theta(x)$输出为1,2,3,4

原文地址:https://www.cnblogs.com/echo-coding/p/8968913.html

时间: 2024-10-06 09:40:19

machine learning 之 Neural Network 1的相关文章

Python -- machine learning, neural network -- PyBrain 机器学习 神经网络

I am using pybrain on my Linuxmint 13 x86_64 PC. As what it is described: PyBrain is a modular Machine Learning Library for Python. Its goal is to offer flexible, easy-to-use yet still powerful algorithms for Machine Learning Tasks and a variety of p

Machine Learning:Neural Network---Representation

Machine Learning:Neural Network---Representation 1,Non-Linear Classification 如果还采取简单的线性分类手段,那么会面临着过拟合以及效率低下的问题(如图所示),然而neural network则可以很好的解决非线性分类问题. 2,Model representation 第一层称为input layer,最后一层称为output layer,中间其余各层称为hidden layer. 注意一下权重参数theta的维数问题.

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是根据现有深度学习教程<UFLDL教程>中的算法,在SparkMLlib中的实现.具体Spark MLlib Deep Learning(深度学习)目录结构: 第一章Neural Net(NN) 1.源码 2.源码解析 3.实例 第二章D

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度,基础方面的非常多,随便看看就可以,只是很多没有把细节说得清楚和明白: 能把细节说清

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 3实例 3.1 测试数据 按照上例数据,或者新建图片识别数据. 3.2 CNN实例 //2 测试数据 Logger.getRootLogger.setLevel(Level.WARN) valdata_path="/use

Deep learning与Neural Network

该文章转自深度学习微信公众号 深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示. Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展.大

Machine Learning - VIII. Neural Networks Representation (Week 4)

http://blog.csdn.net/pipisorry/article/details/4397356 机器学习Machine Learning - Andrew NG courses学习笔记 Neural Networks Representation神经网络表示 Non-linear Hypotheses非线性假设 Neurons and the Brain神经元和大脑 Model Representation模型表示 Examples and Intuitions示例和直觉知识 Mu

Machine Learning - IX. Neural Networks Learning (Week 5)

http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 Neural Networks Learning 神经网络学习 Neural Networks are one of the most powerful learning algorithms that we have today. Cost Function代价函数 Note: 对于multi-

【论文阅读】Sequence to Sequence Learning with Neural Network

Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutskever (Google)and so on 一.总览 DNNs在许多棘手的问题处理上取得了瞩目的成绩.文中提到用一个包含2层隐藏层神经网络给n个n位数字排序的问题.如果有好的学习策略,DNN能够在监督和反向传播算法下训练出很好的参数,解决许多计算上复杂的问题.通常,DNN解决的问题是,算法上容易的而计算上困难