HBase与列存储

  

传统的行存储和(HBase)列存储的区别

1.为什么要按列存储

列式存储(Columnar or column-based)是相对于传统关系型数据库的行式存储(Row-basedstorage)来说的。简单来说两者的区别就是如何组织表

?  Row-based storage stores atable in a sequence of rows.

?  Column-based storage storesa table in a sequence of columns.

行式存储下一张表的数据都是放在一起的,但列式存储下都被分开保存了


                             


行式存储


列式存储


优点


?  数据被保存在一起

INSERT/UPDATE容易


?  查询时只有涉及到的列会被读取

投影(projection)很高效

任何列都能作为索引


缺点


?  选择(Selection)时即使只涉及某几列,所有数据也都会被读取


?  选择完成时,被选择的列要重新组装

?  INSERT/UPDATE比较麻烦

注:关系型数据库理论回顾 - 选择(Selection)和投影(Projection)

数据压缩:通过字典表压缩数据

下面才是那张表本来的样子。经过字典表进行数据压缩后,表中的字符串才都变成数字了。正因为每个字符串字典表里只出现一次了,所以达到了压缩的目的(有点像规范化和非规范化Normalize和Denomalize)

查询执行性能

通过一条查询的执行过程说明列式存储(以及数据压缩)的优点:

关键步骤如下:

1.     去字典表里找到字符串对应数字(只进行一次字符串比较)。

2.     用数字去列表里匹配,匹配上的位置设为1

3.     把不同列的匹配结果进行位运算得到符合所有条件的记录下标。

4.     使用这个下标组装出最终的结果集

列式存储 HBase 系统架构学习

Hbase简介

HBase是一个开源非关系型分布式数据库(NoSQL),它参考了谷歌的BigTable建模,实现的编程语言为 Java

它是Apache软件基金会的Hadoop项目的一部分,运行于HDFS文件系统之上,为 Hadoop 提供类似于BigTable 规模的服务。

因此,它可以容错地存储海量稀疏的数据。

HBase在上实现了BigTable论文提到的压缩算法、内存操作和布隆过滤器

HBase的表能够作为MapReduce任务的输入和输出,可以通过Java API来存取数据,也可以通过REST、Avro或者Thrift的API来访问。

Hbase是bigtable的开源版本,是建立的hdfs之上,提供高可靠性、高性能、列存储、可伸缩、实时读写的数据库系统。

它介于nosql和RDBMS之间,能通过主键(row key)和主键的range来检索数据支持单行事务(可通过hive支持来实现多表join等复杂操作),主要用来存储非结构化和半结构化松散数据

与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力

Hbase中的表一般有这样的特点:

  1. :一个表可以有上亿行,上百万列
  2. 面向列:面向列(族)的存储和权限控制,列(族)独立检索
  3. 稀疏:对于为空(null)的列,并不占用存储空间,因此,表可以设计的非常稀疏。

Hbase在Hadoop Ecosystem中的位置

逻辑视图

Hbase以表的形式存储数据。表有行和列组成。列划分为若干个列族(row family)

Row Key:

与nosql数据库们一样,row key是用来检索记录的主键。

访问Hbase table中的行,只有三种方式:

  1. 通过单个row key访问
  2. 通过row key的range
  3. 全表扫描

Row key行键 (Row key)可以是任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes),在Hbase内部,row key保存为字节数组

存储时,数据按照Row key的字典序(byte order)排序存储

设计key时,要充分排序存储这个特性,将经常一起读取的行存储放到一起。(位置相关性)

字典序对int排序的结果是1,10,100,11,12,13,14,15,16,17,18,19,2,20,21,…,9,91,92,93,94,95,96,97,98,99。

要保持整形的自然序,行键必须用0作左填充

一次读写是原子操作 (不论一次读写多少列)。这个设计决策能够使用户很容易的理解程序在对同一个行进行并发更新操作时的行为。

列族:

Hbase表中的每个列,都归属与某个列族

列族是表的chema的一部分(而列不是),必须在使用表之前定义

列名都以列族作为前缀。例如courses:history,courses:math 都属于courses 这个列族。

访问控制、磁盘和内存的使用统计都是在列族层面进行的。

  实际应用中,列族上的控制权限能帮助我们管理不同类型的应用:我们允许一些应用可以添加新的基本数据、一些应用可以读取基本数据并创建继承的列族、一些应用则只允许浏览数据(甚至可能因为隐私的原因不能浏览所有数据)。

时间戳:

Hbase中通过row和columns确定的为一个存贮单元称为cell每个 cell都保存着同一份数据的多个版本版本通过时间戳来索引

时间戳的类型是 64位整型

  时间戳可以由Hbase(在数据写入时自动 )赋值,此时时间戳是精确到毫秒当前系统时间

  时间戳也可以由客户显式赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳

每个 cell中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面

为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,Hbase提供了两种数据版本回收方式

  一是保存数据的最后n个版本

  二是保存最近一段时间内的版本(比如最近七天)。

用户可以针对每个列族进行设置

Cell:

{row key, column(= + ), version} 唯一确定的单元

cell中的数据是没有类型的,全部是字节码形式存贮

物理存储

1 、Table中的所有行都按照row key的字典序排列

2 、Table 在行的方向上分割为多个Hregion

3、region按大小分割的

  每个表一开始只有一个region,随着数据不断插入表,region不断增大,

  当增大到一个阀值的时候,Hregion就会等分会两个新的Hregion

  当table中的行不断增多,就会有越来越多的Hregion。

4、HRegion是Hbase中分布式存储和负载均衡的最小单元

  最小单元就表示不同的Hregion可以分布在不同的HRegion server上但一个Hregion是不会拆分到多个server上的

5、HRegion虽然是分布式存储的最小单元,但并不是存储的最小单元

  事实上,HRegion由一个或者多个Store组成,每个store保存一个columns family

  每个Strore又由一个memStore和0至多个StoreFile组成。如图:StoreFile以HFile格式保存在HDFS上。

Hfile的格式如下图所示:

HFile分为六个部分:

  • Data Block 段–保存表中的数据,这部分可以被压缩。
  • Meta Block 段 (可选的)–保存用户自定义的kv对,可以被压缩。
  • File Info 段–Hfile的元信息,不被压缩,用户也可以在这一部分添加自己的元信息。
  • Data Block Index 段–Data Block的索引。每条索引的key是被索引的block的第一条记录的key。
  • Meta Block Index段 (可选的)–Meta Block的索引。
  • Trailer– 这一段是定长的。保存了每一段的偏移量,读取一个HFile时,会首先读取Trailer,Trailer保存了每个段的起始位置(段的Magic Number用来做安全check),然后,DataBlock Index会被读取到内存中,这样,当检索某个key时,不需要扫描整个HFile,而只需从内存中找到key所在的block,通过一次磁盘io将整个block读取到内存中,再找到需要的key。DataBlock Index采用LRU机制淘汰(LRU是Least Recently Used的缩写,即最近最久未使用,常用于页面置换算法,是为虚拟页式存储管理服务)。

HFile的Data Block,Meta Block通常采用压缩方式存储,压缩之后可以大大减少网络IO和磁盘IO,随之而来的开销当然是需要花费cpu进行压缩和解压缩

目前Hfile的压缩支持两种方式:Gzip,Lzo

首先HFile文件是不定长的长度固定的只有其中的两块:Trailer和FileInfo

正如图中所示的,Trailer中有指针指向其他数据块的起始点

File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等。

Data Index和Meta Index块记录了每个Data块和Meta块的起始点

Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制

每个Data块的大小可以在创建一个Table的时候通过参数指定大号的Block有利于顺序Scan,小号Block利于随机查询

每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成,

  Magic内容就是一些随机数字,目的是防止数据损坏

HFile里面的每个KeyValue对就是一个简单的byte数组

但是这个byte数组里面包含了很多项,并且有固定的结构。我们来看看里面的具体结构:

  开始是两个固定长度的数值,分别表示Key的长度和Value的长度

  紧接着是Key

    • 开始是固定长度的数值,表示RowKey的长度
    • 紧接着是RowKey
    • 然后是固定长度的数值,表示Family的长度
    • 然后是Family
    • 接着是Qualifier
    • 然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)

  Value部分没有这么复杂的结构,就是纯粹的二进制数据了。

HLog(WAL log)

WAL 意为Write ahead log(http://en.wikipedia.org/wiki/Write-ahead_logging),类似mysql中的binlog,用来做灾难恢复只用,

Hlog记录数据的所有变更,一旦数据修改,就可以从log中进行恢复

每个Region Server维护一个Hlog,而不是每个Region一个

  优点:这样不同region(来自不同table)的日志会混在一起,这样做的目的是不断追加单个文件相对于同时写多个文件而言,可以减少磁盘寻址次数,因此可以提高对table的写性能

  缺点:带来的麻烦是,如果一台region server下线,为了恢复其上的region,需要将region server上的log进行拆分,然后分发到其它region server上进行恢复

HLog文件就是一个普通的Hadoop Sequence File

  Sequence File 的Key是HLogKey对象,

    • HLogKey中记录了写入数据的归属信息
    • 除了table和region名字外,
    • 同时还包括 sequence number和timestamp,timestamp是”写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。

  HLog Sequece File的Value是Hbase的KeyValue对象,即对应HFile中的KeyValue

系统架构

Client

包含访问Hbase的接口

client维护着一些cache来加快对Hbase的访问,比如regione的位置信息。

Zookeeper

  1. 保证任何时候,集群中只有一个master
  2. 存贮所有Region的寻址入口
  3. 实时监控Region Server的状态,将Region server的上线和下线信息实时通知给Master
  4. 存储Hbase的schema,包括有哪些table,每个table有哪些column family

HMaster:

  1. 为Region server分配region,负责region server的负载均衡
  2. 管理用户对Table的增、删、改、查操作
  3. 发现失效的region server并重新分配其上的region
  4. GFS上的垃圾文件回收
  5. 在HRegionServer停机后,负责失效HRegionServer 上的Regions迁移

可以看到,client访问Hbase上数据的过程并不需要master参与(寻址访问zookeeper和region server,数据读写访问regione server),master仅仅维护者table和region的元数据信息,负载很低

HRegionServer

  1. Region server维护Master分配给它的region,处理对这些region的IO请求
  2. Region server负责切分在运行过程中变得过大的region

HRegionServer主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块

HRegionServer内部管理了一系列HRegion对象

  每个HRegion对应了Table中的一个Region

  HRegion中由多个HStore组成

    每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。

HStore存储是HBase存储的核心了,其中由两部分组成,一部分是MemStore,一部分是StoreFiles

  MemStore是Sorted Memory Buffer,

  用户写入的数据首先会放入MemStore

  当MemStore满了以后会Flush成一个StoreFile(底层实现是HFile),

  当StoreFile文件数量增长到一定阈值,会触发Compact合并操作,将多个StoreFiles合并成一个StoreFile,合并过程中会进行版本合并和数据删除

  因此可以看出HBase其实只有增加数据,所有的更新和删除操作都是在后续的compact过程中进行的,这使得用户的写操作只要进入内存中就可以立即返回,保证了HBase I/O的高性能

当StoreFiles Compact后,会逐步形成越来越大的StoreFile

单个StoreFile大小超过一定阈值后,会触发Split操作

  同时把当前Region Split成2个Region,父Region会下线

  新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer上,使得原先1个Region的压力得以分流到2个Region上

下图描述了Compaction和Split的过程:

在理解了上述HStore的基本原理后,还必须了解一下HLog的功能,因为上述的HStore在系统正常工作的前提下是没有问题的,但是在分布式系统环境中,无法避免系统出错或者宕机,因此一旦HRegionServer意外退出,MemStore中的内存数据将会丢失,这就需要引入HLog了。

  每个HRegionServer中都有一个HLog对象

  HLog是一个实现Write Ahead Log的类

  在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),

  HLog文件定期会滚动出新的,并删除旧的文件(已持久化到StoreFile中的数据)

HRegionServer意外终止后,HMaster会通过Zookeeper感知到

  HMaster首先会处理遗留的 HLog文件

    将其中不同Region的Log数据进行拆分,分别放到相应region的目录下

  然后再将失效的region重新分配

  领取到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复

MapReduce on HBase

在HBase系统上运行批处理运算最方便和实用的模型依然是MapReduce,如下图:

关键算法/流程

region定位

系统如何找到某个row key (或者某个 row key range)所在的region ?bigtable 使用三层类似B+树的结构来保存region位置:

  1. 第一层是保存zookeeper里面的文件,它持有root region的位置
  2. 第二层root region是.META.表的第一个region其中保存了.META.z表其它region的位置。通过root region,我们就可以访问.META.表的数据。
  3. 第三层是.META.,它是一个特殊的表,保存了Hbase中所有数据表的region 位置信息

说明:

  1. root region永远不会被split,保证了最多需要三次跳转,就能定位到任意region
  2. META.表每行保存一个region的位置信息,row key 采用表名+表的最后一样编码而成。
  3. 为了加快访问,.META.表的全部region都保存在内存中。
  4. client会将查询过的位置信息保存缓存起来,缓存不会主动失效,因此如果client上的缓存全部失效,则需要进行6次网络来回,才能定位到正确的region(其中三次用来发现缓存失效,另外三次用来获取位置信息)

假设,.META.表的一行在内存中大约占用1KB。并且每个region限制为128MB。那么上面的三层结构可以保存的region数目为:

 

(128MB/1KB) * (128MB/1KB) = = 2(34)个region

读写过程介绍

上文提到,Hbase使用MemStore和StoreFile存储对表的更新

数据在更新时:

  • 首先写入Log(WAL log)和内存(MemStore)中,MemStore中的数据是排序的
  • 当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile
  • 于此同时,系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了。(minor compact)

系统出现意外时,可能导致内存(MemStore)中的数据丢失,此时使用Log(WAL log)来恢复checkpoint之后的数据

前面提到过StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作

  • 当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,
  • 当StoreFile的大小达到一定阈值后,又会对StoreFile进行split,等分为两个StoreFile。

由于对表的更新是不断追加的,处理读请求时,

  • 需要访问Store中全部的StoreFile和MemStore
  • 将他们的按照row key进行合并,由于StoreFile和MemStore都是经过排序的,
  • 并且StoreFile带有内存中索引,合并的过程还是比较快

写请求处理过程:

  1. client向region server提交写请求
  2. region server找到目标region
  3. region检查数据是否与schema一致
  4. 如果客户端没有指定版本,则获取当前系统时间作为数据版本
  5. 更新写入WAL log
  6. 更新写入Memstore
  7. 判断Memstore的是否需要flush为Store文件

region分配

任何时刻,一个region只能分配给一个region server

master记录了当前有哪些可用的region server。以及当前哪些region分配给了哪些region server,哪些region还没有分配

  当存在未分配的region,并且有一个region server上有可用空间时,master就给这个region server发送一个装载请求,把region分配给这个region server。region server得到请求后,就开始对此region提供服务。

region server上线

master使用zookeeper来跟踪region server状态

  • 当某个region server启动时,会首先在zookeeper上的server目录下建立代表自己的文件,并获得该文件的独占锁
  • 由于master订阅了server目录上的变更消息,当server目录下的文件出现新增或删除操作时,master可以得到来自zookeeper的实时通知。因此一旦region server上线,master能马上得到消息。

region server下线

region server下线时,它和zookeeper的会话断开,zookeeper而自动释放代表这台server的文件上的独占锁

master不断轮询server目录下文件的锁状态。如果master发现某个region server丢失了它自己的独占锁,(或者master连续几次和region server通信都无法成功),master就是尝试去获取代表这个region server的读写锁,一旦获取成功,就可以确定:

  1. region server和zookeeper之间网络断开了。
  2. region server挂了

的其中一种情况发生了,无论哪种情况,region server都无法继续为它的region提供服务了,此时master会删除server目录下代表这台region server的文件,并将这台region server的region分配给其它还活着的同志

如果网络短暂出现问题导致region server丢失了它的锁,那么region server重新连接到zookeeper之后,只要代表它的文件还在,它就会不断尝试获取这个文件上的锁,一旦获取到了,就可以继续提供服务

master上线

master启动进行以下步骤:

  1. 从zookeeper上获取唯一一个代码master的锁,用来阻止其它master成为master。
  2. 扫描zookeeper上的server目录,获得当前可用的region server列表。
  3. 和2中的每个region server通信,获得当前已分配的region和region server的对应关系。
  4. 扫描.META.region的集合计算得到当前还未分配的region,将他们放入待分配region列表。

master下线

由于master只维护表和region的元数据,而不参与表数据IO的过程

master下线仅导致所有元数据的修改被冻结(无法创建删除表,无法修改表的schema,无法进行region的负载均衡,无法处理region上下线,无法进行region的合并,唯一例外的是region的split可以正常进行,因为只有region server参与),表的数据读写还可以正常进行

因此master下线短时间内对整个Hbase集群没有影响

从上线过程可以看到,master保存的信息全是可以冗余信息(都可以从系统其它地方收集到或者计算出来),

因此,一般Hbase集群中总是有一个master在提供服务,还有一个以上的”master”在等待时机抢占它的位置

访问接口

  1. Native Java API,最常规和高效的访问方式,适合Hadoop MapReduce Job并行批处理HBase表数据
  2. HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用
  3. Thrift Gateway,利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据
  4. REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制
  5. Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapReduce Job来处理HBase表数据,适合做数据统计
  6. Hive,当前Hive的Release版本尚没有加入对HBase的支持,但在下一个版本Hive 0.7.0中将会支持HBase,可以使用类似SQL语言来访问HBase

hbase 集群的搭建及使用

参考资料:

Apache HBase ? Reference Guide :http://hbase.apache.org/book.html

http://www.searchtb.com/2011/01/understanding-hbase.html

http://www.cnblogs.com/shitouer/archive/2012/06/04/2533518.html

原文地址:https://www.cnblogs.com/panpanwelcome/p/8716483.html

时间: 2024-10-28 19:15:41

HBase与列存储的相关文章

【转】大数据存取的选择:行存储还是列存储?

上个月参加了一个云存储的技术讨论会.这一个月里,陆续收到几位同学讨论大数据保存和处理的邮件.今天是周末,索性把这个月的交流内容整理写下来,供各位参考. 目前大数据存储有两种方案可供选择:行存储和列存储.业界对两种存储方案有很多争持,集中焦点是: 谁能够更有效地处理海量数据,且兼顾安全.可靠.完整性.从目前发展情况看,关系数据库已经不适应这种巨大的存储量和计算要求,基本是淘汰出局.在已知的几种大数据处理软件中,Hadoop 的 HBase 采用列存储,MongoDB 是文档型的行存储,Lexst

行存储 VS 列存储

概述 目前大数据存储有两种方案可供选择:行存储(Row-Based)和列存储(Column-Based).业界对两种存储方案有很多争持,集中焦点是:谁能够更有效地处理海量数据,且兼顾安全.可靠.完整性.从目前发展情况看,关系数据库已经不适应这种巨大的存储量和计算要求,基本是淘汰出局.在已知的几种大数据处理软件中,Hadoop的HBase采用列存储,MongoDB是文档型的行存储,Lexst是二进制型的行存储. 什么是列存储? 列式存储(column-based)是相对于传统关系型数据库的行式存储

HBase底层存储原理——我靠,和cassandra本质上没有区别啊!都是kv 列存储,只是一个是p2p另一个是集中式而已!

理解HBase(一个开源的Google的BigTable实际应用)最大的困难是HBase的数据结构概念究竟是什么?首先HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不同的是HBase基于列的而不是基于行的模式. Google's BigTable论文 清楚地解释了什么是BigTable: Bigtable是一个疏松的分布式的持久的多维排序的map,这个map被行键,列键,和时间戳索引.每一个值都是连续的byte数组.(A Bigtable is a sparse

万亿级日志与行为数据存储查询技术剖析——Hbase系预聚合方案、Dremel系parquet列存储、预聚合系、Lucene系

转自:http://www.infoq.com/cn/articles/trillion-log-and-data-storage-query-techniques?utm_source=infoq&utm_medium=popular_widget&utm_campaign=popular_content_list&utm_content=homepage 目前大数据存储查询方案大概可以分为:Hbase系.Dremel系.预聚合系.Lucene系,笔者就自身的使用经验说说这几个系

HBase 是列式存储数据库吗

在介绍 HBase 是不是列式存储数据库之前,我们先来了解一下什么是行式数据库和列式数据库. 行式数据库和列式数据库 在维基百科里面,对行式数据库和列式数据库的定义为:列式数据库是以列相关存储架构进行数据存储的数据库,主要适合于批量数据处理(OLAP)和即时查询.相对应的是行式数据库,数据以行相关的存储体系架构进行空间分配,主要适合于小批量的数据处理,常用于联机事务型数据处理(OLTP). 比如我们有以下的表格: 那么行式数据库和列式数据库存储模型分别如上面的左图和右图.可以看到,行式数据一行的

行存储和列存储

传统的行式数据库将一个个完整的数据行存储在数据页中.这种方式在大数据量查询的时候会出现以下问题 1.在没有索引的情况下,会把一行全部查出来,查询会使用大量IO 2.虽然建立索引和物化视图可以可以快速定位列,但是也需要花费大量时间 但是如果处理查询时需要用到大部分的数据列,这种方式在磁盘IO上是比较高效的. 一般来说,OLTP(Online Transaction Processing,联机事务处理)应用适合采用这种方式. 一个OLAP类型的查询可能需要访问几百万甚至几十亿个数据行,且该查询往往只

Vertica: 基于DBMS架构的列存储数据仓库

介绍 Vertica(属 于HP公司),是一个基于DBMS架构的数据库系统,适合读密集的分析型数据库应用,比如数据仓库,白皮书中全名称为VerticaAnalytic Database.从命名中也可以看到,Vertica代表它数据存储是列式的,Analytic代表适合分析型需求,DB代表本身是数据库,支持 SQL. 优势 和传统关系型数据库系统以及其他列式数据(仓)库相比,Vertica存在下面三点最关键的优势. 列存储 Vertica对磁盘上的数据采用列式存储,显而易见,列存储可以在数据读取的

解读SQL Server 2014可更新列存储索引——存储机制

概述 SQL Server 2014被号称是微软数据库的一个革命性版本,其性能的提升的幅度是有史以来之最. 可更新的列存储索引作为SQL Server 2014的一个关键功能之一,在提升数据库的查询性能方面贡献非常突出.据微软统计,在面向OLAP查询统计类系统中,相比其他SQL传统版本的数据库,报表查询的性能最大可提升上十倍. 下面我们从存储的角度来了解下SQL Server 2014的可更新列存储索引. 什么是列存储 微软为了提升SQL Server的查询性能,更好的支持大数据分析,早在SQL

SQL Server 2016 —— 聚集列存储索引的功能增强

作者 Jonathan Allen,译者         邵思华         发布于     2015年6月14日 聚集列存储索引(CC Index)是SQL Server 2014中两大最引人瞩目的特性之一,设计为用于超过1千万条记录的数据表.使用者无需明确的指定索引,也能够保证分析式查询的优良性能. 但2014版本中的这一特性存在着一个缺陷,即使用者无法指定索引.虽然CC索引比起传统表的表扫描要快得多,但它还是及不上经手动调整的覆盖索引.因此,为了同时支持这两种模式,开发者不得不创建两张