P3382: [Usaco2004 Open]Cave Cows 3 洞穴里的牛之三

首先,我们先确定,最长的曼哈顿距离只可能为 x1+y2-(x2+y2) 和 x1-y1-(x2-y2) 所以我们只需要维护四个值,

分别代表 max(x+y) ; max(x-y) ; min(x+y) ; min(x-y) ;

因此答案也就是 max(max(x+y)-min(x+y),max(x-y)-min(x-y))。

 1 const maxn=3000000;
 2 var maxadd,minadd,maxdec,mindec,i,a,b,n:longint;
 3 function max(a,b:longint):longint;
 4 begin
 5   if a>b then exit(a)
 6     else exit(b);
 7 end;
 8 function min(a,b:longint):longint;
 9 begin
10   if a<b then exit(a)
11     else exit(b);
12 end;
13 begin
14   minadd:=maxn; mindec:=maxn;
15   readln(n);
16   for i:=1 to n do
17     begin
18       readln(a,b);
19       maxadd:=max(maxadd,a+b);
20       minadd:=min(minadd,a+b);
21       maxdec:=max(maxdec,a-b);
22       mindec:=min(mindec,a-b);
23     end;
24   writeln(max(maxadd-minadd,maxdec-mindec));
25 end.

(转载请注明出处:http://www.cnblogs.com/Kalenda/)

时间: 2024-11-19 18:09:18

P3382: [Usaco2004 Open]Cave Cows 3 洞穴里的牛之三的相关文章

bzoj3382[Usaco2004 Open]Cave Cows 3 洞穴里的牛之三*

bzoj3382[Usaco2004 Open]Cave Cows 3 洞穴里的牛之三 题意: n个点,求最远曼哈顿距离.n≤50000. 题解: 曼哈顿距离转切比雪夫距离(点(x,y)变为点(x+y,x-y)),然后输出最大横坐标-最小横坐标与最大纵坐标-最小纵坐标的较大值即可. 代码: 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #define inc(i,j,k) for(in

3381: [Usaco2004 Open]Cave Cows 2 洞穴里的牛之二

3381: [Usaco2004 Open]Cave Cows 2 洞穴里的牛之二 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 21  Solved: 18[Submit][Status][Discuss] Description 洞窟里有一道长长的通道.它由N(1≤N≤25000)段道尾相连构成,编号分别为1到N.每个通道有一个阈值,其范围在[1,10^9]依次通过i..j的通道,那奶牛的体重指数就不能超过i..j通道中阈值的最小值.贝茜有Q

Bzoj 3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一

3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 64  Solved: 37[Submit][Status][Discuss] Description 很少人知道其实奶牛非常喜欢到洞穴里面去探险. 洞窟里有N(1≤N≤100)个洞室,由M(1≤M≤1000)条双向通道连接着它们.每对洞室间 至多只有一条双向通道.有K(1≤K≤14)个洞室,里面放有1捆干草.牛吃1捆

bzoj3380[Usaco2004 Open]Cave Cows 1 洞穴里的牛之一*

bzoj3380[Usaco2004 Open]Cave Cows 1 洞穴里的牛之一 题意: 给一个无向图,每一条边都有一个阈值,有一些点有草.牛从点1出发,每当它到达有草的点可以选择吃或不吃,如果吃的话体重加1.对于边如果它的阈值小于牛的体重,则此边不可通过.求牛走一圈回到点1的最大体重.有草节点数≤14.点数≤100,边数≤1000. 题解: f[i][S]表示当前点为i,草状态为S的状态能否达到.具体看代码. 代码: 1 #include <cstdio> 2 #include <

bzoj3383[Usaco2004 Open]Cave Cows 4 洞穴里的牛之四*

bzoj3383[Usaco2004 Open]Cave Cows 4 洞穴里的牛之四 题意: 平面直角坐标系有n个点,从(0,0)出发,从一个点上可以跳到所有与它横纵坐标距离都≤2的点上,求最少步数使得纵坐标为T. 题解: 先用set存下所有的点.在做dp的时候把所有横纵坐标与当前节点距离≤2的节点都在set中查找,如果可以查到则可以转移到那个节点. 代码: 1 #include <cstdio> 2 #include <cstring> 3 #include <algor

bzoj3381[Usaco2004 Open]Cave Cows 2 洞穴里的牛之二*

bzoj3381[Usaco2004 Open]Cave Cows 2 洞穴里的牛之二 题意: RMQ问题.序列长度≤25000,问题数≤25000. 题解: 倍增. 代码: 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #define inc(i,j,k) for(int i=j;i<=k;i++) 5 #define maxn 25100 6 using namespace

P3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一

还是蛮简单的一道题,首先dfs一遍,在所有能到达放有干草的洞穴的所有路径中,找出路径上最小伐值的最大值,按这个值由小到大,再来一遍贪心就行了,能放就放,不能放拉倒(也可以理解为,不能放把最前一个删了). 但是如果题目改为每个洞穴不止一堆干草的话,也是没有问题的,只要在队列上在维护一个小根堆,判断队列中最小的干草堆是否比当前小,小则替换,否则不变. 1 const maxn=200; 2 type 3 node=record 4 f,t,w:longint; 5 end; 6 var n,i,j,

P3381: [Usaco2004 Open]Cave Cows 2 洞穴里的牛之二

这题..思维上远没有上一题复杂,是一个裸的RMQ..利用倍增就可以解决了. 1 var n,q,i,j,f,t,c:longint; 2 a:array[0..20,0..25001] of longint; 3 function min(a,b:longint):longint; 4 begin 5 if a>b then exit(b) 6 else exit(a); 7 end; 8 begin 9 readln(n,q); 10 for i:=1 to n do 11 readln(a[

P3383: [Usaco2004 Open]Cave Cows 4 洞穴里的牛之四

这个系列总算是做完了,这是我第一次高效率做完四道题,虽然中间有两道水题,但是第一和第四题还是蛮好的,但是只要能想到思路就很快能打完的. 像这道题,刚开始在想能不能用DP?但是苦于不知道怎么实施,后来又想,这么多点,有点像最短路径,但是总共有50000个点,边数有可能N*N吗? 于是我拿起笔算了一下,发现连边的话,先按X轴由小到大排序一遍,然后往后找 X 比当前点大 <=2 的 X,再通过比较 Y 之间的关系,只要相差不超过 2 就连接一条双向边,这样后面的点就不需要往前找了,但有人会问,会不会是