.net Framework 中的四种计时器

在Framework中存在着4种定时器:其中分为两类,

多线程计时器

1:System.Threading.Timer

2:System.Timers.Timer

特殊目的的单线程计时器:

1:System.Windows.Forms.Timer(Windows Forms Timer)

2:System.Windows.Threading.DispatcherTimer(WPF timer);

多线程计时器比较强大,精确,而且可扩展性强;

单线程计时器比较安全,对于更新 Windows Forms controls或者WPF这种简单任务来说更方便。

System.Threading.Timer是最简单的多线程计时器。在下面的例子中,定时器在5秒后开始定时1秒的调用Tick方法。

public static void Main ()
{
//5秒后开始运行,接着每隔1秒的调用Tick方法
Timer tmr = new Timer(Tick, "tick...", 5000, 1000);
Console.ReadLine();
tmr.Dispose();
}
static void Tick(object data)
{
Console.WriteLine(data);
}

.net framework提供的另一个计时器System.Timers.Timer.简单的对System.Threading.Timer进行了包装。增加了下面几个特性。

  • 实现了Component,所以可以在设计器显示。
  • 代替Change方法的一个Interval属性
  • 代替callback委托的一个Elapsed事件
  • 启动和停止timer的Enabled属性,默认是false。
  • 为了避免Enabled造成混乱,提供了Start和Stop方法。
  • 是否在每次指定的间隔结束时引发Elapsed时间,还是仅间隔第一次结束后运行的AutoReset属性。
  • 在WPF或Windows Forms中安全的调用方法的SynchronizingObject对象。

public static void MainThread()
{
Timer tmr = new Timer();
tmr.Interval = 500;
tmr.Elapsed += new ElapsedEventHandler(tmr_Elapsed);
tmr.Start();
Console.ReadLine();
tmr.Stop();
Console.ReadLine();
tmr.Start();
Console.ReadLine();
tmr.Dispose();
}

static void tmr_Elapsed(object sender, ElapsedEventArgs e)
{
Console.WriteLine("Tick...");

  单线程计时器:

1:System.Windows.Forms.Timer(Windows Forms Timer)

2:System.Windows.Threading.DispatcherTimer(WPF timer);

单线程计时器是被设计成属于他们执行环境的计时器,如果你在一个Windows服务应用程序中使用Windows Forms的Timer,timer 事件并不会被触发,只有在对应的环境下才会被触发。

像System.Timers.Timer一样,他们也提供了相同的成员(Interval,Tick,Start,Stop),但是他们内部的工作原理不同,

WPF和Windows Forms的计时器使用消息循环机制来取代线程池产生消息的机制。

这意味着Tick事件总是在创建timer的那个线程上执行,同时也意味着如果上一个Tick消息还未被处理,即使时间超过了间隔时间,在消息循环中也只存在一个Tick消息。

下面是它们的优点:

  1. 你可以忘记线程安全。
  2. 一个Tick事件在前一个Tick事件被处理完毕前不会被触发。
  3. 你可以直接在Tick事件处理代码中更新控件,不需要调用Control.Invoke或Dispatcher.Invoke.

看下在Winform中使用单线程定时器的效果:

//基于Windows消息循环的单线程计时器
private System.Windows.Forms.Timer timer = new Timer() { };

public Form1()
{
InitializeComponent();

timer.Tick += new EventHandler(timer_Tick);
timer.Enabled = true;
}

void timer_Tick(object sender, EventArgs e)
{
//模拟的做一些耗时的操作
System.Threading.Thread.Sleep(2000);
}

如果运行上面的代码,会发现UI界面响应速度很慢,

原理上面已经介绍了:单线程计时器基于Windows消息循环,应用程序会同步的处理计时器的消息。

解决这个问题的方法是使用多线程计时器:只要修改代码使用多线程计时器即可:

//使用多线程计时器
private System.Timers.Timer timer = new System.Timers.Timer();

public Form1()
{
InitializeComponent();

timer.Elapsed += new System.Timers.ElapsedEventHandler(timer_Elapsed);
timer.Enabled = true;
}

void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
//模拟的做一些耗时的操作
System.Threading.Thread.Sleep(2000);
}

上面的例子告诉我们单线程计时器的缺点:

除非Tick事件的处理代码执行的非常快,否则UI界面会变得响应很慢。

所以 WPF和Windows Forms的计时器都非常适合小任务,尤其是界面更新的任务。例如时钟和计数显示。否则,你需要一个多线程计时器

时间: 2024-08-30 05:20:30

.net Framework 中的四种计时器的相关文章

Spring(七)Spring中的四种增强和顾问

Spring中的四种增强有那四种? 前置增强    后置增强  环绕增强  异常增强 先编写接口和实体类  ISomeService和SomeServiceImpl package demo10; /** * Created by mycom on 2018/3/8. */ public interface ISomeService { public void doSome(); } package demo10; /** * Created by mycom on 2018/3/8. */ p

Activity中的四种启动模式

在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作.在Android中Activity的启动模式决定了Activity的启动运行方式. Android总Activity的启动模式分为四种: [html] view plaincopy Activity启动模式设置: <activity android:name=".MainActivity" android:launchMode="standard" 

C++中的四种转型操作符

在详细介绍C++中的四种转型操作符之前,我们先来说说旧式转型的缺点: ①它几乎允许将任何类型转换为任何其他类型,这是十分拙劣的.如果每次转型都能够更精确地指明意图,则更好. ②旧式转型难以辨识.旧式转型的语法结构是由一对小括号加上一个对象名称组成,而小括号和对象名称在C++的任何地方都有可能被使用. 为解决C旧式转型的缺点,C++导入了4个新的转型操作符:static_cast.const_cast.dynamic_cast.reinterpret_cast.下面我来一一分析这四种转型操作符.

JAVA中的四种引用以及ReferenceQueue和WeakHashMap的使用示例

简介: 本文主要介绍JAVA中的四种引用: StrongReference(强引用).SoftReferenc(软引用).WeakReferenc(弱引用).PhantomReference(虚引用)的作用.同时我们还将介绍ReferenceQueue和WeakHashMap的功能和使用示例. 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. JAVA中的四种引用 四种引用中,软引用.若引用.虚引用都需要相关类来创建.创建的时候

java中的四种单例实现方式

在java中,单例设计模式是非常常见的设计模式,对单例设计模式的概念,不做过多的介绍,下面将逐一介绍四种单例设计模式: 1.第一种单例设计模式 1.1 代码实现 package com.singleton.one; /**  * 第一种单例设计模式  * @author Administrator  *  */ public class SingleTonOne { // 实例化 private static SingleTonOne instance = new SingleTonOne();

对称加密和分组加密中的四种模式(ECB、CBC、CFB、OFB)

对称加密和分组加密中的四种模式(ECB.CBC.CFB.OFB) 一. AES对称加密: AES加密 分组 二. 分组密码的填充 分组密码的填充 e.g.: PKCS#5填充方式 三. 流密码:   四. 分组密码加密中的四种模式: 3.1 ECB模式 优点: 1.简单: 2.有利于并行计算: 3.误差不会被传送: 缺点: 1.不能隐藏明文的模式: 2.可能对明文进行主动攻击: 3.2 CBC模式: 优点: 1.不容易主动攻击,安全性好于ECB,适合传输长度长的报文,是SSL.IPSec的标准.

MySQL数据库中的四种隔离级别

原文:MySQL数据库中的四种隔离级别 事务的隔离性比想象的要复杂,在 SQL 标准中定义了四种级别的隔离级别.通常而言,较低级别的隔离通常可以执行更高的并发,系统的开销也更低 READ UNCOMMITTED 该级别为未提交读.在该级别中,事务中的修改即使没有提交,对其他事务也都是可见的.事务可以读取未提交的数据,这也被称为脏读.这个级别会导致很多的问题,从性能上来说,它不会比其他级别好太多,但缺乏其他级别的很多好处.除非真的有非常必要的理由,在实际应用中一般很少使用. READ COMMIT

TCP协议中的四种定时器

TCP四种定时器 重传计时器.坚持计时器.保活计时器.时间等待计时器 重传计时器: 在TCP发送报文时创建,用来确认报文是否成功发送,超过预定时间,则重新发送,设置重传计时器之后,通常有两种情况: 1.在计时器截止时间到达之前收到了对以发送报文的确认信号,则撤销此计数器: 2.计时器时间到达仍未收到确认信号,则重新发送该报文,并将计时器复位. 坚持计时器: 这种计时器通常是和窗口大小有关的. 先考虑这样一种场景:发送端由于发送速度太快,接收端的窗口大小为零,这是接收段就会发送信号告诉发送端,我现

Android中Button四种点击事件实现方式

1.Xml添加监听属性,这里添加的doClick. 1 <Button 2 android:id="@+id/bt1" 3 android:layout_width="wrap_content" 4 android:layout_height="wrap_content" 5 android:onClick="doClick" 6 android:text="XML添加doClick" 7 andro