【bzoj3513】[MUTC2013]idiots FFT

题目描述

给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率。

输入

第一行T(T<=100),表示数据组数。

接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个数表示a_i。

3≤N≤10^5,1≤a_i≤10^5

输出

T行,每行一个整数,四舍五入保留7位小数。

样例输入

2
4
1 3 3 4
4
2 3 3 4

样例输出

0.5000000
1.0000000



题解

FFT

考虑什么样的3根木棍不能构成三角形:最长边大于等于其余两边之和。

因为长度只有$10^5$,因此可以直接记录由两根木棒拼成某长度的方案数,然后直接求前缀和统计答案即可。

但是朴素的统计方案数的时间复杂度是$O(n^2)$的,会TLE。

考虑到两边的长度s2[]和一边的长度s1[]的卷积有关,因此可以先使用FFT求某长度的个数s1[]的卷积,然后由于两根相同的木棒统计到了答案中,需要减掉;其余的方案出现了2次,需要再除以2.

最后求前缀和统计答案即可。注意需要long long。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
const int len = 262144;
const double pi = acos(-1);
struct data
{
	double x , y;
	data() {}
	data(double x0 , double y0) {x = x0 , y = y0;}
	data operator+(const data &a)const {return data(x + a.x , y + a.y);}
	data operator-(const data &a)const {return data(x - a.x , y - a.y);}
	data operator*(const data &a)const {return data(x * a.x - y * a.y , x * a.y + y * a.x);}
}a[N << 2];
int w[N];
ll sum[N << 2];
void fft(int flag)
{
	int i , j , k;
	for(i = k = 0 ; i < len ; i ++ )
	{
		if(i > k) swap(a[i] , a[k]);
		for(j = len >> 1 ; (k ^= j) < j ; j >>= 1);
	}
	for(k = 2 ; k <= len ; k <<= 1)
	{
		data wn(cos(2 * pi * flag / k) , sin(2 * pi * flag / k));
		for(i = 0 ; i < len ; i += k)
		{
			data w(1 , 0) , t;
			for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn)
				t = w * a[j + (k >> 1)] , a[j + (k >> 1)] = a[j] - t , a[j] = a[j] + t;
		}
	}
}
void work()
{
	int i;
	fft(1);
	for(i = 0 ; i < len ; i ++ ) a[i] = a[i] * a[i];
	fft(-1);
	for(i = 0 ; i < len ; i ++ ) a[i].x /= len;
}
int main()
{
	int T;
	scanf("%d" , &T);
	while(T -- )
	{
		memset(a , 0 , sizeof(a));
		int n , i;
		ll ans = 0;
		scanf("%d" , &n);
		for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &w[i]) , a[w[i]].x ++ ;
		work();
		for(i = 1 ; i <= n ; i ++ ) a[w[i] * 2].x -- ;
		for(i = 1 ; i < len ; i ++ ) sum[i] = sum[i - 1] + (ll)(a[i].x / 2 + 0.1);
		for(i = 1 ; i <= n ; i ++ ) ans += sum[w[i]];
		printf("%.7Lf\n" , 1 - (long double)ans / ((long double)n * (n - 1) * (n - 2) / 6));
	}
	return 0;
}
时间: 2024-10-18 10:32:29

【bzoj3513】[MUTC2013]idiots FFT的相关文章

bzoj 3513: [MUTC2013]idiots -- FFT

3513: [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MB Description 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. Input 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个数表示a_i. 3≤N≤10^5,1≤a_i≤10^5 Output T行,每行一个整数,四舍五入保留7位小数. Sample Input 2 4 1 3 3

【BZOJ3160】万径人踪灭 Manacher+FFT

[BZOJ3160]万径人踪灭 Description Input Output Sample Input Sample Output HINT 题解:自己想出来1A,先撒花~(其实FFT部分挺裸的) 做这道题,第一思路很重要,显然看到这题的第一想法就是ans=总数-不合法(不要问我为什么显然).因为向这种用补集法的题一般都会给一些很奇葩的限制条件,但是一旦换个角度去想就很水了,好了不多说废话了. 显然,不合法的情况,也就是连续的回文区间的方案数,我们直接上Manacher就搞定了嘛!答案就是所

【BZOJ3771】Triple 生成函数+FFT

[BZOJ3771]Triple Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: “这把斧头,是不是你的?” 樵夫一看:“是啊是啊!” 水神把斧头扔在一边,又拿起一个东西问: “这把斧头,是不是你的?” 樵夫看不清楚,但又怕真的是自己的斧头,只好又答:“是啊是啊!” 水神又把手上的东西扔在一边,拿起第三个东西问: “这把斧头,是不是你的?” 樵夫还是看不清楚,但是他觉得再这样下去他就没法砍柴了. 于是他又一次答:“

【bzoj3527】[Zjoi2014]力 FFT

2016-06-01  21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 1 #include<bits/stdc++.h> 2 #define inf 1000000000 3 #define ll long long 4 #define N 500005 5 using namespace std; 6 int read(){ 7 int x=0,f=1;char ch=getchar

【bzoj4827】[Hnoi2017]礼物 FFT

题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但是由于上面 装饰物的方向是固定的,所以手环不能翻转.需要在经过亮度改造和旋转

【XSY2166】Hope 分治 FFT

题目描述 对于一个\(1\)到\(n\)的排列\(a_1,a_2,a_3,\ldots,a_n\),我们定义这个排列的\(P\)值和\(Q\)值: 对于每个\(a_i\),如果存在一个最小的\(j\)使得\(i<j\)且\(a_i<a_j\),那么将\(a_i\)和\(a_j\)连一条无向边.于是就得到一幅图.计算这幅图每个联通块的大小,将它们相乘,得到\(P\).记\(Q=P^k\). 对于\(1\)到\(n\)的所有排列,我们想知道它们的\(Q\)值之和.由于答案可能很大,请将答案对\(9

【转】快速傅里叶变换(FFT)详解

目录 前言 多项式 系数表示法 点值表示法 复数 向量 圆的弧度制 平行四边形定则 复数 运算法则 单位根 单位根的性质 快速傅里叶变换 快速傅里叶逆变换 理论总结 递归实现 迭代实现 本文只讨论FFT在信息学奥赛中的应用 文中内容均为个人理解,如有错误请指出,不胜感激 回到顶部 前言 先解释几个比较容易混淆的缩写吧 DFT:离散傅里叶变换->O(n2)O(n2)计算多项式乘法 FFT:快速傅里叶变换->O(n?log(n)O(n?log?(n)计算多项式乘法 FNTT/NTT:快速傅里叶变换

【模版】多项式乘法 FFT

https://www.luogu.org/problem/show?pid=3803 题目背景 这是一道模版题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 1 2 1 2 1

【BZOJ 3771】 3771: Triple (FFT+容斥)

3771: Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 307 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:"是啊是啊!" 水神把斧头扔在一边,又拿起一个东西问: "这把斧头,是不是你的?" 樵夫看不清楚,但又怕真的是自己的斧头,只好又