机器学习是什么--周志华

机器学习是什么--周志华

机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。

不少人其实并没有真正想过,这是不是自己喜欢搞的东西,只不过看见别人都在搞,觉着跟大伙儿走总不会吃亏吧。

问题是,真有个“大伙儿”吗?就不会是“两伙儿”、“三伙儿”?如果有“几伙儿”,那到底该跟着“哪伙儿”走呢?

很多人可能没有意识到,所谓的machine learning community,现在至少包含了两个有着完全不同的文化、完全不同的价值观的群体,称为machine learning "communities"也许更合适一些。

第一个community,是把机器学习看作人工智能分支的一个群体,这群人的主体是计算机科学家。

现在的“机器学习研究者”可能很少有人读过1983年出的“Machine Learning: An Artificial Intelligence Approach”这本书。这本书的出版标志着机器学习成为人工智能中一个独立的领域。它其实是一部集早期机器学习研究之大成的文集,收罗了若干先贤(例 如Herbert Simon,那位把诺贝尔奖、图灵奖以及各种各样和他相关的奖几乎拿遍了的科学天才)的大作,主编是Ryszard S. Michalski(此君已去世多年了,他可算是机器学习的奠基人之一)、Jaime G. Carbonell(此君曾是Springer的LNAI的总编)、Tom Mitchell(此君是CMU机器学习系首任系主任、著名教材的作者,机器学习界没人不知道他吧)。Machine Learning杂志的创刊,正是这群人努力的结果。这本书值得一读。虽然技术手段早就日新月异了,但有一些深刻的思想现在并没有过时。各个学科领域总有不少东西,换了新装之后又粉墨登场,现在热火朝天的transfer learning,其实就是learning by analogy的升级版。

人工智能的研究从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,是有一条自然、清晰的脉络。人工智能出身的机器学习研究者,绝大部分是把机器学习作为实现人工智能的一个途径,正如1983年的书名那样。他们关注的是人工智能中的问题,希望以机器学习为手段,但具体采用什么样的学习手段,是基于统计的、代数的、还是逻辑的、几何的,他们并不care。

这群人可能对统计学习目前dominating的地位未必满意。靠统计学习是不可能解决人工智能中大部分问题的,如果统计学习压制了对其他手段的研究,可能不是好事。这群人往往也不care在文章里show自己的数学水平,甚至可能是以简化表达自己的思想为荣。人工智能问题不是数学问题,甚至未必是依靠数学能够解决的问题。人工智能中许多事情的难处,往往在于我们不知道困难的本质在哪里,不知道“问题”在哪里。一旦“问题”清楚了,解决起来可能并不困难。

第二个community,是把机器学习看作“应用统计学”的一个群体,这群人的主体是统计学家。

和纯数学相比,统计学不太“干净”,不少数学家甚至拒绝承认统计学是数学。但如果和人工智能相比,统计学就太干净了,统计学研究的问题是清楚的,不象人工智能那样,连问题到底在哪里都不知道。在相当长时间里,统计学家和机器学习一直保持着距离。

慢慢地,不少统计学家逐渐意识到,统计学本来就该面向应用,而机器学习天生就是一个很好的切入点。因为机器学习虽然用到各种各样的数学,但要分析大量数据中蕴涵的规律,统计学是必不可少的。统计学出身的机器学习研究者,绝大部分是把机器学习当作应用统计学。他们关注的是如何把统计学中的理论和方法变成可以在计算机上有效实现的算法,至于这样的算法对人工智能中的什么问题有用,他们并不care。

这群人可能对人工智能毫无兴趣,在他们眼中,机器学习就是统计学习,是统计学比较偏向应用的一个分支,充其量是统计学与计算机科学的交叉。这群人对统计学习之外的学习手段往往是排斥的,这很自然,基于代数的、逻辑的、几何的学习,很难纳入统计学的范畴。

两个群体的文化和价值观完全不同。第一个群体认为好的工作,第二个群体可能觉得没有技术含量,但第一个群体可能恰恰认为,简单的才好,正因为很好地抓住了问题本质,所以问题变得容易解决。第二个群体欣赏的工作,第一个群体可能觉得是故弄玄虚,看不出他想解决什么人工智能问题,根本就不是在搞人工智能、搞计算机,但别人本来也没说自己是在“搞人工智能”、“搞计算机”,本来就不是在为人工智能做研究。

两个群体各有其存在的意义,应该宽容一点,不需要去互较什么短长。但是既然顶着Machine Learning这个帽子的不是“一伙儿”,而是“两伙儿”,那么要“跟进”的新人就要谨慎了,先搞清楚自己更喜欢“哪伙儿”。

引两位著名学者的话结尾,一位是人工智能大奖得主、一位是统计学习大家,名字我不说了,省得惹麻烦:

“I do not come to AI to do statistics”

“I do not have interest in AI”

from:http://hi.baidu.com/macula7/blog/item/8a3f22cd9587f81a00e92829.html

版权声明:本文为博主原创文章,未经博主允许不得转载。

周志华谈机器学习与数据挖掘

序言:

“机器学习”是人工智能的核心研究领域之一, 其最初的研究动机是为了让计算机系统具有人的学习能力以便实现人工智能,因为众所周知,没有学习能力的系统很难被认为是具有智能的。目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”[1]。事实上,由于“经验”在计算机系统中主要是以数据的形式存在的,因此机器学习需要设法对数据进行分析,这就使得它逐渐成为智能数据分析技术的创新源之一,并且为此而受到越来越多的关注。

“数据挖掘”和“知识发现”通常被相提并论,并在许多场合被认为是可以相互替代的术语。对数据挖掘有多种文字不同但含义接近的定义,例如“识别出巨量数据中有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程”[2]。其实顾名思义,数据挖掘就是试图从海量数据中找出有用的知识。大体上看,数据挖掘可以视为机器学习和数据库的交叉,它主要利用机器学习界提供的技术来分析海量数据,利用数据库界提供的技术来管理海量数据。

因 为 机 器 学  习 和 数 据 挖  掘 有 密 切 的  联系,周志华把它们放在一起做一个粗浅的介绍。

详细见:机器学习与数据挖掘

时间: 2024-11-10 15:24:42

机器学习是什么--周志华的相关文章

《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”

参考书籍:<机器学习>(周志华) 说       明:本篇内容为读书笔记,主要参考教材为<机器学习>(周志华).详细内容请参阅书籍——第4章 决策树.部分内容参考网络资源,在此感谢所有原创者的工作. ================================================================= 第一部分 理论基础 1. 纯度(purity) 对于一个分支结点,如果该结点所包含的样本都属于同一类,那么它的纯度为1,而我们总是希望纯度越高越好,也就是

(二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树

CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现--"西瓜树" 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动很小的一部分就可以了,把原先计算信息熵和信息增益的部分换做计算基尼指数,选择最优属性的时候,选择最小的基尼指数即可. #导入模块 import pandas as pd import numpy as np from collections import Counter #数据获取与处理

《机器学习》(周志华)笔记

2.3性能度量 2.3.1 回归任务中的性能度量 均方误差 2.3.2 分类任务中的性能度量 精度    acc =(TP+TN)/(TP+FN+FP+TN) 错误率E =(FN+FP)/(TP+FN+FP+TN) 准确率 P = TP/(TP+FP)                                 挑出的好瓜占挑出的西瓜的比例 召回率 R = TP/(TP+FN) = TP/m+                 挑出的好瓜占所有好瓜的比例 真正例率 TPR = TP/(TP+F

开啃《机器学习》(周志华)- 第5章 神经网络

基本概念: Neural Networks:神经网络,由具有适应性的简单单元组成的广泛并行互联的网络,能够模拟生物神经系统对真实物体之间做出的交互反应 Neuron:神经元,神经网络的组成单元,收到的输入超过阀值时,会被激活,并传递信息到下一级神经元. M-P神经元模型:每个神经元接收到来自n个其他神经元传来的信号,每个输入信号带有一个connection weight(连接权重),加权得到一个总输入值与threshold(阀值)进行比较,通过activation function(激活函数,如

【读书笔记】机器学习-周志华 &amp; 机器学习实战(Python)

这两本放在一起看吧.当然了,我觉得Spark上面的实践其实是非常棒的.有另一个系列文章讨论了Spark. /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈哈. P1 一般用模型指全局性结果(例如决策树),用模式指局部性结果(例如一条规则). P3 如果预测的是离散值,那就是分类-classification:如果预测的是连续值,那就叫回归-regression. P3

机器学习-周志华

机器学习的一些小tips周志华Tom M.Mitchell,是卡内基梅隆大学的教授,讲授“机器学习”等多门课程:美国人工智能协会(AAAL)的主席:美国<Machine Learning>杂志.国际机器学习年度会议(ICML)的创始人:多种技术杂志的撰稿人,曾发表过许多文章,出版过多本专著,是机器学习领域的著名学者. 本书展示了机器学习中核心的算法和理论,并阐明了算法的运行过程.本书综合了许多的研究成果,例如统计学.人工智能.哲学.信息论.生物学.认知科学.计算复杂性和控制论等,并以此来理解问

周志华:关于机器学习的一点思考

https://mp.weixin.qq.com/s/sEZM_o5D6AhyMgvocbsFhw 演讲:周志华 整理:肖琴.闻菲 [新智元导读]机器学习如今大获成功的原因有哪些?如何才能取得进一步的突破?南京大学周志华教授在AI WORLD 2018大会上分享他关于机器学习的一点思考:我们需要设计新的.神经网络以外的深度模型:让智能体在弱监督条件下也能够学习,以及考虑开放动态任务环境下的学习. 播放 震撼!AI WORLD 2018世界人工智能峰会开场视频 南京大学计算机系主任.人工智能学院院

偶尔转帖:AI会议的总结(by南大周志华)

偶尔转帖:AI会议的总结(by南大周志华) 说明: 纯属个人看法, 仅供参考. tier-1的列得较全, tier-2的不太全, tier-3的很不全. 同分的按字母序排列. 不很严谨地说, tier-1是可以令人羡慕的, tier-2是可以令 人尊敬的,由于AI的相关会议非常多, 所以能列进tier-3的也是不错的 tier-1: IJCAI (1+): International Joint Conference on Artificial Intelligence AAAI (1): Na

(转)周志华:“深”为什么重要,以及还有什么深的网络

周志华老师大家应该都很熟悉吧,今天偶然看到他在今年IJCAI大会上的发言稿,感觉读完受益匪浅,故摘录下来与大家分享,也方便日后复习查看. 本文由雷锋网整理完成,原文地址:https://ai.yanxishe.com/page/reportDetail/14317 这里只是用于学习用途,非商业用途,如有侵权,请联系博主删除. 深度学习就等于深度神经网络吗? 深度学习今天已经有各种各样的应用,到处都是它,不管图像也好,视频也好,声音自然语言处理等等.那么我们问一个问题,什么是深度学习? 我想大多数